Logotipo do repositório
 

Publicação:
High-intensity exercise training induces mitonuclear imbalance and activates the mitochondrial unfolded protein response in the skeletal muscle of aged mice

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Springer

Tipo

Artigo

Direito de acesso

Resumo

The impairment of mitochondrial metabolism is a hallmark of aging. Mitonuclear imbalance and the mitochondrial unfolded protein response (UPRmt) are two conserved mitochondrial mechanisms that play critical roles in ensuring mitochondrial proteostasis and function. Here, we combined bioinformatics, physiological, and molecular analyses to examine the role of mitonuclear imbalance and UPRmt in the skeletal muscle of aged rodents and humans. The analysis of transcripts from the skeletal muscle of aged humans (60-70 years old) revealed that individuals with higher levels of UPRmt-related genes displayed a consistent increase in several mitochondrial-related genes, including the OXPHOS-associated genes. Interestingly, high-intensity interval training (HIIT) was effective in stimulating the mitonuclear imbalance and UPRmt in the skeletal muscle of aged mice. Furthermore, these results were accompanied by higher levels of several mitochondrial markers and improvements in physiological parameters and physical performance. These data indicate that the maintenance or stimulation of the mitonuclear imbalance and UPRmt in the skeletal muscle could ensure mitochondrial proteostasis during aging, revealing new insights into targeting mitochondrial metabolism by using physical exercise.

Descrição

Palavras-chave

Aging, UPRmt, Skeletal muscle, Exercise, Mitonuclear imbalance

Idioma

Inglês

Como citar

Geroscience. Dordrecht: Springer, 6 p., 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação