Logotipo do repositório
 

Publicação:
Adapted splittings for pairs (G,W)

dc.contributor.authorAndrade, Maria Gorete Carreira [UNESP]
dc.contributor.authorde Lourdes Campello Fanti, Ermínia [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:57:25Z
dc.date.available2019-10-06T16:57:25Z
dc.date.issued2019-02-15
dc.description.abstractLet G be a group, W a G-set with [G:Gw]=∞ for all w∈W, where Gw denotes the point stabilizer of w∈W. Considering the restriction map resW G:H1(G,Z2G)→∏w∈EH1(Gw,Z2G), where E is a set of orbit representatives for the G-action in W, we define an algebraic invariant denoted by E‾(G,W). In this paper, by using the relation of this invariant with the end e(G) defined by Freudenthal–Hopf–Specker and a Swarup's Theorem about splittings of groups adapted to a family of subgroups, we show, for G finitely generated and W a G-set which falls into many finitely G-orbits, that (G,W) is adapted if, and only if, E‾(G,W)≥2.en
dc.description.affiliationIBILCE - UNESP - São Paulo State University, Rua Cristovão Colombo, 2265
dc.description.affiliationUnespIBILCE - UNESP - São Paulo State University, Rua Cristovão Colombo, 2265
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2012/24454-8
dc.format.extent17-24
dc.identifierhttp://dx.doi.org/10.1016/j.topol.2018.11.026
dc.identifier.citationTopology and its Applications, v. 253, p. 17-24.
dc.identifier.doi10.1016/j.topol.2018.11.026
dc.identifier.issn0166-8641
dc.identifier.lattes3186337502957366
dc.identifier.scopus2-s2.0-85058015013
dc.identifier.urihttp://hdl.handle.net/11449/189949
dc.language.isoeng
dc.relation.ispartofTopology and its Applications
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectCohomology of groups
dc.subjectDuality
dc.subjectEnds of groups
dc.subjectSplitting of groups
dc.titleAdapted splittings for pairs (G,W)en
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes3186337502957366
unesp.author.orcid0000-0002-6401-049X[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos