Atenção!


Informamos que o Repositório Institucional passará por atualização no dia 15/01/2026 e ficará fora do ar entre 10:00 e 14:00 horas.

Pedimos a sua compreensão

Logo do repositório

Controlling Tiltrotors Unmanned Aerial Vehicles (UAVs) with Deep Reinforcement Learning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Unmanned Aerial Vehicles (UAVs) have gained significant attention in various domains due to their versatility and potential applications. Effective control of UAVs is crucial for achieving desired flight behaviors and optimizing their performance. This paper presents a comprehensive exploration of learning-based approaches for controlling UAVs with fixed-rotors and tiltrotors, specifically focusing on the Proximal Policy Optimization (PPO) and Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithms. The study aims to compare and evaluate the efficacy of these two state-of-the-art reinforcement learning algorithms in controlling UAVs with varying designs and control complexities. By utilizing PPO and TD3, we address the challenges associated with maneuvering UAVs in dynamic environments and achieving precise control under different flight conditions. We conducted extensive simulations to assess the performance of PPO and TD3 algorithms in diverse UAV scenarios, considering multiple design configurations and control requirements. The evaluation criteria encompassed stability, robustness, trajectory tracking accuracy, and control efficiency. Results demonstrate the suitability and effectiveness of both PPO and TD3 in controlling UAVs.

Descrição

Palavras-chave

Proximal Policy Optimization (PPO), Reinforcement Learning, Tiltrotor, Twin-Delayed Deep Deterministic Policy Gradient (TD3), Unmanned Aerial Vehicle (UAV)

Idioma

Inglês

Citação

Proceedings - 2023 Latin American Robotics Symposium, 2023 Brazilian Symposium on Robotics, and 2023 Workshop of Robotics in Education, LARS/SBR/WRE 2023, p. 107-112.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Instituto de Ciência e Tecnologia
ICT
Campus: Sorocaba


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso