Controlling Tiltrotors Unmanned Aerial Vehicles (UAVs) with Deep Reinforcement Learning
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Unmanned Aerial Vehicles (UAVs) have gained significant attention in various domains due to their versatility and potential applications. Effective control of UAVs is crucial for achieving desired flight behaviors and optimizing their performance. This paper presents a comprehensive exploration of learning-based approaches for controlling UAVs with fixed-rotors and tiltrotors, specifically focusing on the Proximal Policy Optimization (PPO) and Twin-Delayed Deep Deterministic Policy Gradient (TD3) algorithms. The study aims to compare and evaluate the efficacy of these two state-of-the-art reinforcement learning algorithms in controlling UAVs with varying designs and control complexities. By utilizing PPO and TD3, we address the challenges associated with maneuvering UAVs in dynamic environments and achieving precise control under different flight conditions. We conducted extensive simulations to assess the performance of PPO and TD3 algorithms in diverse UAV scenarios, considering multiple design configurations and control requirements. The evaluation criteria encompassed stability, robustness, trajectory tracking accuracy, and control efficiency. Results demonstrate the suitability and effectiveness of both PPO and TD3 in controlling UAVs.
Descrição
Palavras-chave
Proximal Policy Optimization (PPO), Reinforcement Learning, Tiltrotor, Twin-Delayed Deep Deterministic Policy Gradient (TD3), Unmanned Aerial Vehicle (UAV)
Idioma
Inglês
Citação
Proceedings - 2023 Latin American Robotics Symposium, 2023 Brazilian Symposium on Robotics, and 2023 Workshop of Robotics in Education, LARS/SBR/WRE 2023, p. 107-112.




