Publicação: Multinodal Load Forecasting Using an ART-ARTMAP-Fuzzy Neural Network and PSO Strategy
dc.contributor.author | Antunes, Juliana Fonseca | |
dc.contributor.author | Souza Araujo, Nelcileno Virgilio de | |
dc.contributor.author | Minussi, Carlos Roberto [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | IFMT | |
dc.contributor.institution | Universidade Federal de Mato Grosso do Sul (UFMS) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-10T19:33:04Z | |
dc.date.available | 2020-12-10T19:33:04Z | |
dc.date.issued | 2013-01-01 | |
dc.description.abstract | This work presents a system based on Artificial Neural Networks and PSO (Particle Swarm Optimization) strategy, to multinodal load forecasting, i.e., forecasting in several points of the electrical network (substations, feeders, etc.). Short-term load forecasting is an important task to planning and operation of electric power systems. It is necessary precise and reliable techniques to execute the predictions. Therefore, the load forecasting uses the Adaptive Resonance Theory. To improve the precision, the PSO technique is used to choose the best parameters for the Artificial Neural Networks training. Results show that the use of this technique with a little set of training data improves the parameters of the neural network, calculated by the MAPE (mean absolute perceptual error) of the global and multinodal load forecasted. | en |
dc.description.affiliation | IFMT, Inst Educ Ciencia & Tecnol Mato Grosso, Dept Informat, Cuiaba, Brazil | |
dc.description.affiliation | Univ Fed Mato Grosso, UFMT, Inst Comp, Cuiaba, Brazil | |
dc.description.affiliation | UNESP Univ Estadual Paulista, Dept Engn Eletr, Ilha Solteira, Brazil | |
dc.description.affiliationUnesp | UNESP Univ Estadual Paulista, Dept Engn Eletr, Ilha Solteira, Brazil | |
dc.format.extent | 6 | |
dc.identifier.citation | 2013 Ieee Grenoble Powertech (powertech). New York: Ieee, 6 p., 2013. | |
dc.identifier.uri | http://hdl.handle.net/11449/196091 | |
dc.identifier.wos | WOS:000387091900294 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2013 Ieee Grenoble Powertech (powertech) | |
dc.source | Web of Science | |
dc.subject | Multinodal Load Forecasting | |
dc.subject | Particle Swarm Optimization | |
dc.subject | Adaptive Resonance Theory | |
dc.subject | Artificial Neural Network | |
dc.title | Multinodal Load Forecasting Using an ART-ARTMAP-Fuzzy Neural Network and PSO Strategy | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.author.lattes | 7166279400544764[3] | |
unesp.author.orcid | 0000-0001-6428-4506[3] | |
unesp.department | Engenharia Elétrica - FEIS | pt |