Publicação: Rapid monitoring of beer-quality attributes based on UV-Vis spectral data
Carregando...
Arquivos
Data
2017-12-29
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
This work aimed to determinate eight beer properties using UV-Vis spectra in combination with principal component regression (PCR) or artificial neural network (ANN) models. A statistical experimental design was performed to generate the calibration data. First, principal component analysis (PCA) was applied to the original spectral data, and the scores in significant PCs were utilized to calibrate both models. PCR showed poor correlation for beer parameters (R2 < 0.61). The ANNs showed satisfactory correlations (R2 = 0.74–0.92) and low relative error considering a variable range (Er < 9%) for most of the beer-quality attributes, but vicinal diketones (R2 = 0.56, Er = 16.69%). Once implemented, this method would be fast and low cost.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
International Journal of Food Properties, v. 20, p. 1686-1699.