Logotipo do repositório
 

Publicação:
Highly red luminescent stabilized tetragonal rare earth-doped HfO2 crystalline ceramics prepared by sol-gel

dc.contributor.authorBorges, Fernanda Hediger
dc.contributor.authorda Hora Oliveira, Douglas Silva
dc.contributor.authorHernandes, Giulia Paulino
dc.contributor.authorLima Ribeiro, Sidney José [UNESP]
dc.contributor.authorGonçalves, Rogéria Rocha
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T12:38:04Z
dc.date.available2023-07-29T12:38:04Z
dc.date.issued2022-10-01
dc.description.abstractWe report high incorporation of rare earth ions (RE3+) into hafnia nanoparticles prepared by the sol–gel method and investigate how these dopants affect hafnia structure and phase transformation. An ethanolic suspension containing 5-nm hafnia nanoparticles was obtained from HfOCl2.8H2O in ethanol. Pure and 0.1–7 mol% Eu3+-doped materials afforded HfO2 monoclinic phase, whereas hafnia nanoparticles added with 10 and 20 mol% Eu3+ were stabilized in the tetragonal phase. Structural evolution of the nanoparticles was analyzed by Eu3+ luminescence spectroscopy and excited level lifetimes. The emission spectra in the visible region showed an increase of the Eu3+ site symmetry due to hafnia phase transformation from monoclinic to tetragonal upon increasing Eu3+ concentration. Concentration quenching, followed by lifetime measurements, occurred at high Eu3+ concentration (20 mol %). The hafnia tetragonal phase was stabilized with non-optically active La3+ (a fixed concentration of 10 mol %), co-doped with a lower concentration of Eu3+ ions (from 0.1 to 3 mol %). This strategy ensured that Eu3+ luminescence in tetragonal hafnia was intense and prevented quenching by the high Eu3+ concentration. In this sense, the hafnia structure and emission properties can be tailored by the RE3+ concentration, so that an interesting material for applications in photonics and biophotonics can be achieved.en
dc.description.affiliationLaboratório de Materiais Luminescentes Micro e Nanoestruturados –Mater Lumen Departamento de Química FFCLRP Universidade de São Paulo, SP
dc.description.affiliationInstituto de Química São Paulo State University, SP
dc.description.affiliationUnespInstituto de Química São Paulo State University, SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/11301-2
dc.description.sponsorshipIdFAPESP: 2020/00277-6
dc.description.sponsorshipIdFAPESP: 2020/05319-9
dc.description.sponsorshipIdFAPESP: 2020/05319–9
dc.description.sponsorshipIdFAPESP: 2021/0811-2,
dc.description.sponsorshipIdFAPESP: 2021/08111-2
dc.description.sponsorshipIdCNPq: 303110/2019–8
dc.identifierhttp://dx.doi.org/10.1016/j.omx.2022.100206
dc.identifier.citationOptical Materials: X, v. 16.
dc.identifier.doi10.1016/j.omx.2022.100206
dc.identifier.issn2590-1478
dc.identifier.scopus2-s2.0-85142195381
dc.identifier.urihttp://hdl.handle.net/11449/246332
dc.language.isoeng
dc.relation.ispartofOptical Materials: X
dc.sourceScopus
dc.titleHighly red luminescent stabilized tetragonal rare earth-doped HfO2 crystalline ceramics prepared by sol-gelen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-5540-7690[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos