Logotipo do repositório
 

Publicação:
Damage Detection Approach for Bridges under Temperature Effects using Gaussian Process Regression Trained with Hybrid Data

dc.contributor.authorSilva, Samuel da [UNESP]
dc.contributor.authorFigueiredo, Eloi
dc.contributor.authorMoldovan, Ionut
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionLusofona Univ
dc.contributor.institutionUniv Lisbon
dc.date.accessioned2022-11-30T13:47:05Z
dc.date.available2022-11-30T13:47:05Z
dc.date.issued2022-11-01
dc.description.abstractThe success of detecting damage robustly relies on the availability of long periods of past data covering multiple weather scenarios and on the information contained in the data used during the learning process. Thus, the innovation of this paper is to apply a hybrid data set to train a Gaussian process regression, assuming a practically plausible range of environmental conditions. The proposed model presents a satisfactory performance to detect damage when structural changes caused by damage are blurred with changes caused by temperature. Rather than relying exclusively on experimental data, this strategy use finite-element models to generate complementary data when the structure is undamaged under a broad spectrum of temperature variations that are not measured. Once the stochastic interpolation is defined, the damage detection model is tested using experimental data considering different damage levels and temperature conditions. Induced settlements of a bridge pier are used as realistic damage scenarios. The Z24 prestressed concrete highway bridge in Switzerland is used to demonstrate the applicability of the proposed strategy. (c) 2022 American Society of Civil Engineers.en
dc.description.affiliationUNESP Sao Paulo State Univ, Dept Mech Engn, Av Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.affiliationLusofona Univ, Fac Engn, Campo Grande 376, P-1749024 Lisbon, Portugal
dc.description.affiliationUniv Lisbon, CERIS, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal
dc.description.affiliationUnespUNESP Sao Paulo State Univ, Dept Mech Engn, Av Brasil 56, BR-15385000 Ilha Solteira, SP, Brazil
dc.description.sponsorshipKU Leuven (Belgium) Structural Mechanics Section as the Z24 Bridge data source
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipPortuguese National Funding Agency for Science Research and Technology (FCT/Portugal)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.description.sponsorshipIdFAPESP: 19/19684-3
dc.description.sponsorshipIdPortuguese National Funding Agency for Science Research and Technology (FCT/Portugal): UIDB/04625/2020
dc.format.extent12
dc.identifierhttp://dx.doi.org/10.1061/(ASCE)BE.1943-5592.0001949
dc.identifier.citationJournal Of Bridge Engineering. Reston: Asce-amer Soc Civil Engineers, v. 27, n. 11, 12 p., 2022.
dc.identifier.doi10.1061/(ASCE)BE.1943-5592.0001949
dc.identifier.issn1084-0702
dc.identifier.urihttp://hdl.handle.net/11449/237866
dc.identifier.wosWOS:000853871600009
dc.language.isoeng
dc.publisherAsce-amer Soc Civil Engineers
dc.relation.ispartofJournal Of Bridge Engineering
dc.sourceWeb of Science
dc.titleDamage Detection Approach for Bridges under Temperature Effects using Gaussian Process Regression Trained with Hybrid Dataen
dc.typeArtigo
dcterms.rightsHolderAsce-amer Soc Civil Engineers
dspace.entity.typePublication
unesp.author.orcid0000-0001-6430-3746[1]
unesp.author.orcid0000-0002-9168-6903[2]
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos