Publicação:
Supervised variational relevance learning, an analytic geometric feature selection with applications to omic datasets

dc.contributor.authorBoareto, Marcelo
dc.contributor.authorCesar, Jonatas
dc.contributor.authorLeite, Vitor Barbanti Pereira [UNESP]
dc.contributor.authorCaticha, Nestor
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-10-22T06:48:40Z
dc.date.available2015-10-22T06:48:40Z
dc.date.issued2015-05-01
dc.description.abstractWe introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.en
dc.description.affiliationInstituto de Física, University of Sao Paulo, Brazil
dc.description.affiliationUnespIBILCE, Universidade Estadual Paulista, Sao José do Rio Preto, São Paulo,
dc.description.sponsorshipCenter for the Study of Natural and Artificial Information Processing Systems of the University of Sao Paulo (CNAIPS, Nucleo de Apoio a Pesquisa da Universidade de Sao Paulo)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent705-711
dc.identifierhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6977958
dc.identifier.citationIeee-acm Transactions On Computational Biology And Bioinformatics. Los Alamitos: Ieee Computer Soc, v. 12, n. 3, p. 705-711, 2015.
dc.identifier.doi10.1109/TCBB.2014.2377750
dc.identifier.issn1545-5963
dc.identifier.lattes0500034174785796
dc.identifier.urihttp://hdl.handle.net/11449/129779
dc.identifier.wosWOS:000356608100022
dc.language.isoeng
dc.publisherIeee Computer Soc
dc.relation.ispartofIeee-acm Transactions On Computational Biology And Bioinformatics
dc.relation.ispartofjcr2.428
dc.relation.ispartofsjr0,649
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSuvrelen
dc.subjectRelevance Learningen
dc.subjectAnalytic metric learningen
dc.subjectProteomicsen
dc.subjectMetabolomicsen
dc.subjectGenomicsen
dc.subjectFeature selectionen
dc.subjectDistance learningen
dc.titleSupervised variational relevance learning, an analytic geometric feature selection with applications to omic datasetsen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee Computer Soc
dspace.entity.typePublication
unesp.author.lattes0500034174785796
unesp.author.orcid0000-0002-9915-6376[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentFísica - IBILCEpt

Arquivos