Logotipo do repositório
 

Publicação:
Effect of atmosphere and dopants on sintering of SnO2

dc.contributor.authorVarela, José Arana [UNESP]
dc.contributor.authorPerazolli, Leining Antonio [UNESP]
dc.contributor.authorLongo, Elson [UNESP]
dc.contributor.authorLeite, E. R.
dc.contributor.authorCerri, J. A.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2014-05-27T11:19:38Z
dc.date.available2014-05-27T11:19:38Z
dc.date.issued1998-12-01
dc.description.abstractTin oxide is an n-type semiconductor material with a high covalent behavior. Mass transport in this oxide depends on the surface state promoted by atmosphere or by the solid solution of a non-isovalent oxide doping The sintering and grain growth of this type of oxide powder is then controlled by atmosphere and by extrinsic oxygen vacancy formation. For pure SnO2 powder the surface state depends only on the interaction of atmosphere molecules with the SnO2 surface. Inert atmosphere like argon or helium promotes oxygen vacancy formation at the surface due to reduction of SnO2 to SnO at the surface and liberation of oxygen molecules forming oxygen vacancies. As consequence surface diffusion is enhanced leading to grain coarsening but no densification. Oxygen atmosphere inhibits the SnO2 reduction decreasing the surface oxygen vacancy concentration. Addition of dopants with lower valence at sintering temperature creates extrinsic charged oxygen vacancies that promote mass transport at grain boundary leading to densification and grain growth of this polycrystalline oxide.en
dc.description.affiliationInstituto de Química UNESP, Araraquara, SP
dc.description.affiliationDepartamento de Química UFSCar, São Carlos, SP
dc.description.affiliationUnespInstituto de Química UNESP, Araraquara, SP
dc.format.extent131-143
dc.identifierhttp://dx.doi.org/10.1080/10420159808220286
dc.identifier.citationRadiation Effects and Defects in Solids, v. 146, n. 1-4, p. 131-143, 1998.
dc.identifier.doi10.1080/10420159808220286
dc.identifier.issn1042-0150
dc.identifier.lattes3822723627284619
dc.identifier.orcid0000-0003-1153-2742
dc.identifier.scopus2-s2.0-0032306613
dc.identifier.urihttp://hdl.handle.net/11449/65588
dc.identifier.wosWOS:000079993400012
dc.language.isoeng
dc.relation.ispartofRadiation Effects and Defects in Solids
dc.relation.ispartofjcr0.526
dc.relation.ispartofsjr0,234
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectDopants
dc.subjectSintering
dc.subjectSintering atmospheres
dc.subjectTin oxide
dc.subjectArgon
dc.subjectDensification
dc.subjectDiffusion in solids
dc.subjectGrain boundaries
dc.subjectGrain growth
dc.subjectHelium
dc.subjectMass transfer
dc.subjectPolycrystalline materials
dc.subjectSemiconductor doping
dc.subjectSemiconductor growth
dc.subjectThermal effects
dc.subjectNon-isovalent oxide doping
dc.subjectSemiconducting tin compounds
dc.titleEffect of atmosphere and dopants on sintering of SnO2en
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dspace.entity.typePublication
unesp.author.lattes3822723627284619[2]
unesp.author.orcid0000-0003-1153-2742[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos