Logotipo do repositório
 

Publicação:
Precision conservation: from visual analysis of soil aggregates to the use of neural networks

dc.contributor.authorRibeiro, Admilson Írio [UNESP]
dc.contributor.authorFilho, Afonso Peche
dc.contributor.authorRosas, Claudia Liliana Gutierrez [UNESP]
dc.contributor.authorAlbiero, Daniel
dc.contributor.authorFengler, Felipe Hashimoto [UNESP]
dc.contributor.authorde Medeiros, Gerson Araujo [UNESP]
dc.contributor.authorDiniz, Ivando Severino [UNESP]
dc.contributor.authorCarvalho, Marcela Merides [UNESP]
dc.contributor.authorLongo, Regina Márcia
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto Agronômico de Campinas
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionPontifícia Universidade Católica de Campinas/PUC
dc.date.accessioned2021-06-25T10:52:16Z
dc.date.available2021-06-25T10:52:16Z
dc.date.issued2020-01-01
dc.description.abstractThe concept of precision conservation can be defined as a set of space technologies and other procedures linked to mappable environmental variables, which can be used to program conservation management practices for natural resources that consider the variability of these variables in space and time within of natural or agricultural systems. In this context, structural loss of soil through human activities is considered, as with a process with a spatial and temporal variation. The management of soil aggregation conditions can contribute to more regenerative and sustainable agricultural processes. It allows spatial analysis technologies through georeferenced visual indicators or even the use of systems with automatic learning, known as deep learning. In this sense, a fair visual method was developed with an analysis of fuzzy logic to classify aggregates in terms of shape, surface roughness, and biogenic structures. Thus, in a second stage, a model of the artificial neural network was developed, capable of detecting and classifying different forms of soil aggregates, thus allowing a brief discussion of the theme and its potential for application in conservation management through the analysis of aggregates via systems automatic sorting. In this way, elements are presented for the motivation of research and development in adaptive technologies in supporting decision-making that can help integrate dynamic and spatial information in the understanding of the soil’s structural condition to preserve the soil more precisely.en
dc.description.affiliationPrograma de Pós-Graduação em Ciências Ambientais Departamento de Engenharia Ambiental Universidade Estadual Paulista/UNESP, Sorocaba-SP
dc.description.affiliationInstituto Agronômico de Campinas, Rod. Dom Gabriel Paulino Bueno Couto, km 65, Japi, Jundiai-SP
dc.description.affiliationUniversidade Estadual de Campinas/FEAGRI-UNICAMP, Campinas-SP
dc.description.affiliationCentro de Ciências Exatas Ambientais e de Tecnologia Pontifícia Universidade Católica de Campinas/PUC, Campinas-SP
dc.description.affiliationUnespPrograma de Pós-Graduação em Ciências Ambientais Departamento de Engenharia Ambiental Universidade Estadual Paulista/UNESP, Sorocaba-SP
dc.format.extent01-13
dc.identifierhttp://dx.doi.org/10.5935/1806-6690.20200101
dc.identifier.citationRevista Ciencia Agronomica, v. 51, n. 5, p. 01-13, 2020.
dc.identifier.doi10.5935/1806-6690.20200101
dc.identifier.issn1806-6690
dc.identifier.issn0045-6888
dc.identifier.scopus2-s2.0-85100741203
dc.identifier.urihttp://hdl.handle.net/11449/207268
dc.language.isoeng
dc.relation.ispartofRevista Ciencia Agronomica
dc.sourceScopus
dc.subjectArtificial neural networks
dc.subjectFuzzy logic
dc.subjectMorphometry
dc.subjectSoil aggregate
dc.titlePrecision conservation: from visual analysis of soil aggregates to the use of neural networksen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt
unesp.departmentEngenharia Ambiental - ICTSpt

Arquivos