Publicação: Unusual Yang-Lee edge singularity in the one-dimensional axial-next-to-nearest-neighbor Ising model
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
We show here for the one-dimensional spin-1/2 axial-next-to-nearest- neighbor Ising model in an external magnetic field that the linear density of Yang-Lee zeros may diverge with critical exponent σ=-2/3 at the Yang-Lee edge singularity. The necessary condition for this unusual behavior is the triple degeneracy of the transfer-matrix eigenvalues. If this condition is absent we have the usual value σ=-1/2. Analogous results have been found in the literature in the spin-1 Blume-Emery-Griffths model and in the three-state Potts model in a magnetic field with two complex components. Our results support the universality of σ=-2/3 which might be a one-dimensional footprint of a tricritical version of the Yang-Lee edge singularity possibly present also in higher-dimensional spin models. © 2010 The American Physical Society.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, v. 82, n. 5, 2010.