Logotipo do repositório
 

Publicação:
Convergence analysis of an elitist non-homogeneous genetic algorithm with crossover/mutation probabilities adjusted by a fuzzy controller

dc.contributor.authorPereira, Andre
dc.contributor.authorCampos, Viviane
dc.contributor.authorRoveda, Jose [UNESP]
dc.contributor.authorSantana, Fagner
dc.contributor.authorMedeiros, Francisco de
dc.contributor.institutionUniv Fed Rio Grande do Norte
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:33:11Z
dc.date.available2019-10-04T12:33:11Z
dc.date.issued2018-09-01
dc.description.abstractIn recent years, several attempts to improve the efficiency of the canonical genetic algorithm have been presented. The advantage of the elitist non-homogeneous genetic algorithm is that, variations of the mutation probabilities permit the algorithm to broaden its search space at the start and restrict it later on, however the way in which the mutation probabilities vary is defined before the algorithm is initiated. To solve this problem various types of controllers can be used to adjust such changes. This work presents an elitist non-homogeneous genetic algorithm where the mutation probability is adjusted by a fuzzy controller. Many simulation studies have used fuzzy controllers to adjust the parameters in order to improve the performance of the genetic algorithm. However, no previous investigation has discussed the conditions that must be met by the controller in order to ensure convergence of the genetic algorithm. A generalized example will be used to illustrate how sufficient conditions for the algorithm convergence can be readily achieved. And finally, numerical simulations are used to compare the proposed algorithm with the canonical genetic algorithm.en
dc.description.affiliationUniv Fed Rio Grande do Norte, Dept Math, Natal, RN, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Environm Engn, Sorocaba, Brazil
dc.description.affiliationUniv Fed Rio Grande do Norte, Dept Stat, Natal, RN, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Environm Engn, Sorocaba, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent19-32
dc.identifier.citationChilean Journal Of Statistics. Santiago: Soc Chilena Estadistica-soche, v. 9, n. 2, p. 19-32, 2018.
dc.identifier.issn0718-7912
dc.identifier.urihttp://hdl.handle.net/11449/185172
dc.identifier.wosWOS:000452203100003
dc.language.isoeng
dc.publisherSoc Chilena Estadistica-soche
dc.relation.ispartofChilean Journal Of Statistics
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectConvergence
dc.subjectFuzzy controller
dc.subjectGenetic algorithms
dc.subjectGlobal optimization
dc.subjectMarkov chain
dc.titleConvergence analysis of an elitist non-homogeneous genetic algorithm with crossover/mutation probabilities adjusted by a fuzzy controlleren
dc.typeArtigo
dcterms.rightsHolderSoc Chilena Estadistica-soche
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt
unesp.departmentEngenharia Ambiental - ICTSpt

Arquivos