Logotipo do repositório
 

Publicação:
Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

We refer to a pair of non trivial probability measures (μ0, μ1) supported on the unit circle as a coherent pair of measures of the second kind on the unit circle if the corresponding sequences of monic orthogonal polynomials {Φn(μ0;z)}n≥0 and {Φn(μ1;z)}n≥0 satisfy 1nΦn′(μ0;z)=Φn-1(μ1;z)-χnΦn-2(μ1;z), n≥ 2. It turns out that there are more interesting examples of pairs of measures on the unit circle with this latter coherency property than in the case of the standard coherence. The main objective in this contribution is to determine such pairs of measures. The polynomials orthogonal with respect to the Sobolev inner products associated with coherent pairs of measures of the second kind are also studied.

Descrição

Palavras-chave

coherent pairs of measures of the second kind, Orthogonal polynomials on the unit circle, Sobolev orthogonal polynomials on the unit circle

Idioma

Inglês

Como citar

Results in Mathematics, v. 71, n. 3-4, p. 1127-1149, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação