Publicação: Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind
Carregando...
Arquivos
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
We refer to a pair of non trivial probability measures (μ0, μ1) supported on the unit circle as a coherent pair of measures of the second kind on the unit circle if the corresponding sequences of monic orthogonal polynomials {Φn(μ0;z)}n≥0 and {Φn(μ1;z)}n≥0 satisfy 1nΦn′(μ0;z)=Φn-1(μ1;z)-χnΦn-2(μ1;z), n≥ 2. It turns out that there are more interesting examples of pairs of measures on the unit circle with this latter coherency property than in the case of the standard coherence. The main objective in this contribution is to determine such pairs of measures. The polynomials orthogonal with respect to the Sobolev inner products associated with coherent pairs of measures of the second kind are also studied.
Descrição
Palavras-chave
coherent pairs of measures of the second kind, Orthogonal polynomials on the unit circle, Sobolev orthogonal polynomials on the unit circle
Idioma
Inglês
Como citar
Results in Mathematics, v. 71, n. 3-4, p. 1127-1149, 2017.