Publicação: Desulfurization of Model Oil through Adsorption over Activated Charcoal and Bentonite Clay Composites
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Adsorption of dibenzothiophene (DBT) from model oil was investigated using composites of pure activated charcoal and pure bentonite clay. DBT adsorption was carried out in batch mode experiments at laboratory scale, where the developed composite materials showed a synergistic effect in removal of DBT from the model oil in terms of improved surface acidity of the pure activated charcoal and mesoporous structure of the pure bentonite clay. Thermodynamics, kinetics, and optimization of various adsorption parameters were investigated. Kinetic analyses proved that DBT adsorption followed pseudo-second-order kinetics. To study the thermodynamics of the adsorption, different isotherm adsorption models were applied. The Langmuir isotherm best fitted to the adsorption data. Various thermodynamic parameters were evaluated, including Gibbs free energy, entropy, and enthalpy.
Descrição
Palavras-chave
Activated charcoal, Adsorption, Bentonite clay, Desulfurization, Dibenzothiophene
Idioma
Inglês
Como citar
Chemical Engineering and Technology, v. 43, n. 3, p. 564-573, 2020.