Logo do repositório

3D-printed electrochemical sensors

dc.contributor.authorSiqueira, Gilvana P.
dc.contributor.authorde Faria, Lucas V. [UNESP]
dc.contributor.authorSwain, Krishna Kumari
dc.contributor.authorTrindade, Magno A.G. [UNESP]
dc.contributor.authorRichter, Eduardo M.
dc.contributor.authorMuñoz, Rodrigo A.A.
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionFluminense Federal University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionIIT Madras
dc.contributor.institutionRodovia Dourados-Itahum
dc.date.accessioned2025-04-29T18:43:33Z
dc.date.issued2025-01-01
dc.description.abstractThis chapter presents a preliminary background on 3D printing technologies applied for electrochemical applications, especially focusing electroanalysis. Next, we present a brief guide for those who intends to start working with 3D-printed electrodes for electroanalysis, pointing out how (a) to investigate such electrode processes toward electrochemical sensing, (b) protocols of surface posttreatment of 3D-printed electrodes, and (c) the influence of 3D printing parameters on the electrode processes. Next, the chapter will describe some applications of 3D-printed electrodes in different fields, including forensics, food, (bio)fuels, and natural water contaminants. The main analytical features of the proposed electroanalytical methods are discussed and presented in tables, which also show the photos or schemes of the 3D-printed devices. Finally, perspectives of 3D-printed electrochemical sensors are presented with future directions.en
dc.description.affiliationInstitute of Chemistry Federal University of Uberlandia
dc.description.affiliationDepartment of Analytical Chemistry Institute of Chemistry Fluminense Federal University
dc.description.affiliationUNESP National Institute for Alternative Technologies of Detection Toxicological Evaluation and Removal of Micropollutants and Radioactives Institute of Chemistry
dc.description.affiliationDepartment of Applied Mechanics IIT Madras, Tamil Nadu
dc.description.affiliationUniversidade Federal da Grande Dourados Rodovia Dourados-Itahum
dc.description.affiliationUnespUNESP National Institute for Alternative Technologies of Detection Toxicological Evaluation and Removal of Micropollutants and Radioactives Institute of Chemistry
dc.format.extent355-391
dc.identifierhttp://dx.doi.org/10.1016/B978-0-443-15675-5.00015-X
dc.identifier.citation3D Printing in Analytical Chemistry: Sample Preparation, Separation, and Sensing, p. 355-391.
dc.identifier.doi10.1016/B978-0-443-15675-5.00015-X
dc.identifier.scopus2-s2.0-85218376084
dc.identifier.urihttps://hdl.handle.net/11449/299818
dc.language.isoeng
dc.relation.ispartof3D Printing in Analytical Chemistry: Sample Preparation, Separation, and Sensing
dc.sourceScopus
dc.subjectAdditive manufacturing
dc.subjectBiofuels
dc.subjectCarbon-based composite materials
dc.subjectElectrochemistry
dc.subjectEnvironmental analysis
dc.subjectFood
dc.subjectForensic
dc.subjectFused filament fabrication
dc.title3D-printed electrochemical sensorsen
dc.typeCapítulo de livropt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos