Logotipo do repositório
 

Publicação:
Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap

dc.contributor.authorKumar, R. Kishor
dc.contributor.authorYoung-S., Luis E. [UNESP]
dc.contributor.authorVudragović, Dušan
dc.contributor.authorBalaž, Antun
dc.contributor.authorMuruganandam, Paulsamy
dc.contributor.authorAdhikari, S. K. [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionScientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade
dc.contributor.institutionSchool of Physics, Bharathidasan University, Palkalaiperur Campus
dc.date.accessioned2018-12-11T16:57:37Z
dc.date.available2018-12-11T16:57:37Z
dc.date.issued2015-01-01
dc.description.abstractMany of the static and dynamic properties of an atomic Bose-Einstein condensate (BEC) are usually studied by solving the mean-field Gross-Pitaevskii (GP) equation, which is a nonlinear partial differential equation for short-range atomic interaction. More recently, BEC of atoms with long-range dipolar atomic interaction are used in theoretical and experimental studies. For dipolar atomic interaction, the GP equation is a partial integro-differential equation, requiring complex algorithm for its numerical solution. Here we present numerical algorithms for both stationary and non-stationary solutions of the full three-dimensional (3D) GP equation for a dipolar BEC, including the contact interaction. We also consider the simplified one- (1D) and two-dimensional (2D) GP equations satisfied by cigar- and disk-shaped dipolar BECs. We employ the split-step Crank-Nicolson method with real- and imaginary-time propagations, respectively, for the numerical solution of the GP equation for dynamic and static properties of a dipolar BEC. The atoms are considered to be polarized along the z axis and we consider ten different cases, e.g., stationary and non-stationary solutions of the GP equation for a dipolar BEC in 1D (along x and z axes), 2D (in x-y and x-z planes), and 3D, and we provide working codes in Fortran 90/95 and C for these ten cases (twenty programs in all). We present numerical results for energy, chemical potential, root-mean-square sizes and density of the dipolar BECs and, where available, compare them with results of other authors and of variational and Thomas-Fermi approximations.en
dc.description.affiliationInstituto de Física, Universidade de São Paulo
dc.description.affiliationInstituto de Física Teórica, UNESP - Universidade Estadual Paulista
dc.description.affiliationScientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118
dc.description.affiliationSchool of Physics, Bharathidasan University, Palkalaiperur Campus
dc.description.affiliationUnespInstituto de Física Teórica, UNESP - Universidade Estadual Paulista
dc.description.sponsorshipCouncil of Scientific and Industrial Research
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent117-128
dc.identifierhttp://dx.doi.org/10.1016/j.cpc.2015.03.024
dc.identifier.citationComputer Physics Communications, v. 195, p. 117-128.
dc.identifier.doi10.1016/j.cpc.2015.03.024
dc.identifier.file2-s2.0-84932195208.pdf
dc.identifier.issn0010-4655
dc.identifier.scopus2-s2.0-84932195208
dc.identifier.urihttp://hdl.handle.net/11449/171896
dc.language.isoeng
dc.relation.ispartofComputer Physics Communications
dc.relation.ispartofsjr1,729
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBose-Einstein condensate
dc.subjectDipolar atoms
dc.subjectFortran and C programs
dc.subjectGross-Pitaevskii equation
dc.subjectReal- and imaginary-time propagation
dc.subjectSplit-step Crank-Nicolson scheme
dc.titleFortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trapen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-5435-1688[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84932195208.pdf
Tamanho:
943.57 KB
Formato:
Adobe Portable Document Format
Descrição: