Publicação: Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap
dc.contributor.author | Kumar, R. Kishor | |
dc.contributor.author | Young-S., Luis E. [UNESP] | |
dc.contributor.author | Vudragović, Dušan | |
dc.contributor.author | Balaž, Antun | |
dc.contributor.author | Muruganandam, Paulsamy | |
dc.contributor.author | Adhikari, S. K. [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade | |
dc.contributor.institution | School of Physics, Bharathidasan University, Palkalaiperur Campus | |
dc.date.accessioned | 2018-12-11T16:57:37Z | |
dc.date.available | 2018-12-11T16:57:37Z | |
dc.date.issued | 2015-01-01 | |
dc.description.abstract | Many of the static and dynamic properties of an atomic Bose-Einstein condensate (BEC) are usually studied by solving the mean-field Gross-Pitaevskii (GP) equation, which is a nonlinear partial differential equation for short-range atomic interaction. More recently, BEC of atoms with long-range dipolar atomic interaction are used in theoretical and experimental studies. For dipolar atomic interaction, the GP equation is a partial integro-differential equation, requiring complex algorithm for its numerical solution. Here we present numerical algorithms for both stationary and non-stationary solutions of the full three-dimensional (3D) GP equation for a dipolar BEC, including the contact interaction. We also consider the simplified one- (1D) and two-dimensional (2D) GP equations satisfied by cigar- and disk-shaped dipolar BECs. We employ the split-step Crank-Nicolson method with real- and imaginary-time propagations, respectively, for the numerical solution of the GP equation for dynamic and static properties of a dipolar BEC. The atoms are considered to be polarized along the z axis and we consider ten different cases, e.g., stationary and non-stationary solutions of the GP equation for a dipolar BEC in 1D (along x and z axes), 2D (in x-y and x-z planes), and 3D, and we provide working codes in Fortran 90/95 and C for these ten cases (twenty programs in all). We present numerical results for energy, chemical potential, root-mean-square sizes and density of the dipolar BECs and, where available, compare them with results of other authors and of variational and Thomas-Fermi approximations. | en |
dc.description.affiliation | Instituto de Física, Universidade de São Paulo | |
dc.description.affiliation | Instituto de Física Teórica, UNESP - Universidade Estadual Paulista | |
dc.description.affiliation | Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118 | |
dc.description.affiliation | School of Physics, Bharathidasan University, Palkalaiperur Campus | |
dc.description.affiliationUnesp | Instituto de Física Teórica, UNESP - Universidade Estadual Paulista | |
dc.description.sponsorship | Council of Scientific and Industrial Research | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.format.extent | 117-128 | |
dc.identifier | http://dx.doi.org/10.1016/j.cpc.2015.03.024 | |
dc.identifier.citation | Computer Physics Communications, v. 195, p. 117-128. | |
dc.identifier.doi | 10.1016/j.cpc.2015.03.024 | |
dc.identifier.file | 2-s2.0-84932195208.pdf | |
dc.identifier.issn | 0010-4655 | |
dc.identifier.scopus | 2-s2.0-84932195208 | |
dc.identifier.uri | http://hdl.handle.net/11449/171896 | |
dc.language.iso | eng | |
dc.relation.ispartof | Computer Physics Communications | |
dc.relation.ispartofsjr | 1,729 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Bose-Einstein condensate | |
dc.subject | Dipolar atoms | |
dc.subject | Fortran and C programs | |
dc.subject | Gross-Pitaevskii equation | |
dc.subject | Real- and imaginary-time propagation | |
dc.subject | Split-step Crank-Nicolson scheme | |
dc.title | Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-5435-1688[4] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-84932195208.pdf
- Tamanho:
- 943.57 KB
- Formato:
- Adobe Portable Document Format
- Descrição: