Logotipo do repositório
 

Publicação:
Vortices in nonlocal Gross-Pitaevskii equation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Iop Publishing Ltd

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 37, n. 26, p. 6633-6651, 2004.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação