Logo do repositório

In situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteries

dc.contributor.authorMonje, Ivonne E.
dc.contributor.authorSanchez-Ramirez, Nedher
dc.contributor.authorSantagneli, Silvia H. [UNESP]
dc.contributor.authorCamargo, Pedro H.
dc.contributor.authorBélanger, Daniel
dc.contributor.authorSchougaard, Steen B.
dc.contributor.authorTorresi, Roberto M.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidad de Ingenieria y Tecnologia – UTEC
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Helsinki
dc.contributor.institutionUniversité du Québec à Montréal
dc.date.accessioned2022-04-28T19:45:51Z
dc.date.available2022-04-28T19:45:51Z
dc.date.issued2021-11-15
dc.description.abstractThe development of negative electrode materials with better performance than those currently used in Li-ion technology has been a major focus of recent battery research. Here, we report the synthesis and electrochemical evaluation of in situ-formed nitrogen-doped carbon/SiOC. The materials were synthesized by a sol–gel process using 3-(aminopropyl)triethoxysilane (APTES), sodium citrate and glycerol. The electrochemical performance of pyrolyzed materials was studied using poly(acrylic acid) binder and commercial organic electrolyte. Our reported approach enables changes in both the amount of nitrogen and the morphology as a function of the molar ratio of APTES:citrate and reaction time. Spherical-shaped NC/SiOC composite electrodes deliver a delithiation capacity of 622 mAh/g at 0.1 A/g and an initial coulombic efficiency of ∼63%, while in the large bulk material, respective values of 367 mAh/g and ∼55% were obtained. After 1000 charge/discharge cycles at 1.6 A/g, the latter material exhibits 98% of the initial capacity once it returned to lower current cycling. Overall, our results indicate that NC/SiOC materials are quite promising for electrochemical applications since both their large capacity and stability demonstrate superior performance compared to traditional graphite. Moreover, our synthesis is simple and, more importantly, environmentally friendly chemicals, such as sodium citrate and glycerol, are used.en
dc.description.affiliationDepartamento de Química Fundamental Instituto de Química – Universidade de São Paulo, Av. Prof. Lineu Prestes 748
dc.description.affiliationDepartamento de ciencias Universidad de Ingenieria y Tecnologia – UTEC
dc.description.affiliationInstituto de Química. UNESP, Rue Francisco Degni, 55
dc.description.affiliationDepartment of Chemistry University of Helsinki, A.I. Virtasen Aukio 1
dc.description.affiliationNanoQAM and Département de Chimie Université du Québec à Montréal, Case Postale, 8888 Succursale Centre-Ville
dc.description.affiliationUnespInstituto de Química. UNESP, Rue Francisco Degni, 55
dc.identifierhttp://dx.doi.org/10.1016/j.jelechem.2021.115732
dc.identifier.citationJournal of Electroanalytical Chemistry, v. 901.
dc.identifier.doi10.1016/j.jelechem.2021.115732
dc.identifier.issn1572-6657
dc.identifier.scopus2-s2.0-85116930582
dc.identifier.urihttp://hdl.handle.net/11449/222626
dc.language.isoeng
dc.relation.ispartofJournal of Electroanalytical Chemistry
dc.sourceScopus
dc.subjectLithium-ion batteries
dc.subjectNegative electrode
dc.subjectNitrogen-doped carbon
dc.subjectSilicon oxide
dc.subjectSilicon oxycarbide
dc.titleIn situ-formed nitrogen-doped carbon/silicon-based materials as negative electrodes for lithium-ion batteriesen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos