Logotipo do repositório
 

Publicação:
Degradation analysis in the estimation of photometric redshifts from non-representative training sets

dc.contributor.authorRivera, J. D. [UNESP]
dc.contributor.authorMoraes, B.
dc.contributor.authorMerson, A. I.
dc.contributor.authorJouvel, S.
dc.contributor.authorAbdalla, F. B.
dc.contributor.authorAbdalla, M. C. B. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUCL
dc.contributor.institutionCALTECH
dc.contributor.institutionRhodes Univ
dc.date.accessioned2018-11-26T17:52:10Z
dc.date.available2018-11-26T17:52:10Z
dc.date.issued2018-07-01
dc.description.abstractWe perform an analysis of photometric redshifts estimated by using a non-representative training sets in magnitude space. We use the ANNz2 and GPz algorithms to estimate the photometric redshift both in simulations and in real data from the Sloan Digital Sky Survey (DR12). We show that for the representative case, the results obtained by using both algorithms have the same quality, using either magnitudes or colours as input. In order to reduce the errors when estimating the redshifts with a non-representative training set, we perform the training in colour space. We estimate the quality of our results by using a mock catalogue which is split samples cuts in the r band between 19.4 < r < 20.8. We obtain slightly better results with GPz on single point z-phot estimates in the complete training set case, however the photometric redshifts estimated with ANNz2 algorithm allows us to obtain mildly better results in deeper r-band cuts when estimating the full redshift distribution of the sample in the incomplete training set case. By using a cumulative distribution function and a Monte Carlo process, we manage to define a photometric estimator which fits well the spectroscopic distribution of galaxies in the mock testing set, but with a larger scatter. To complete this work, we perform an analysis of the impact on the detection of clusters via density of galaxies in a field by using the photometric redshifts obtained with a non-representative training set.en
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
dc.description.affiliationUCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
dc.description.affiliationCALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
dc.description.affiliationCALTECH, IPAC, Mail Code 314-6,1200 East Calif Blvd, Pasadena, CA 91125 USA
dc.description.affiliationRhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, R Dr Bento Teobaldo Ferraz 271, BR-01140070 Sao Paulo, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipScience and Technology Facilities Council
dc.description.sponsorshipBIS National E-infrastructure capital
dc.description.sponsorshipSTFC capital grant
dc.description.sponsorshipSTFC DiRAC Operations
dc.description.sponsorshipDurham University
dc.description.sponsorshipRoyal Society via an RSURF
dc.description.sponsorshipEuropean Community through the DEDALE grant within the H2020 Framework Program of the European Commission
dc.description.sponsorshipIdScience and Technology Facilities Council: ST/J501013/1
dc.description.sponsorshipIdScience and Technology Facilities Council: ST/L00075X/1
dc.description.sponsorshipIdBIS National E-infrastructure capital: ST/K00042X/1
dc.description.sponsorshipIdSTFC capital grant: ST/H008519/1
dc.description.sponsorshipIdSTFC DiRAC Operations: ST/K003267/1
dc.description.sponsorshipIdEuropean Community through the DEDALE grant within the H2020 Framework Program of the European Commission: 665044
dc.format.extent4330-4347
dc.identifierhttp://dx.doi.org/10.1093/mnras/sty880
dc.identifier.citationMonthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 477, n. 4, p. 4330-4347, 2018.
dc.identifier.doi10.1093/mnras/sty880
dc.identifier.fileWOS000435630100004.pdf
dc.identifier.issn0035-8711
dc.identifier.urihttp://hdl.handle.net/11449/164332
dc.identifier.wosWOS:000435630100004
dc.language.isoeng
dc.publisherOxford Univ Press
dc.relation.ispartofMonthly Notices Of The Royal Astronomical Society
dc.relation.ispartofsjr2,346
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectmethods: data analysis
dc.subjectgalaxies: distances and redshifts
dc.titleDegradation analysis in the estimation of photometric redshifts from non-representative training setsen
dc.typeArtigo
dcterms.licensehttp://www.oxfordjournals.org/access_purchase/self-archiving_policyb.html
dcterms.rightsHolderOxford Univ Press
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000435630100004.pdf
Tamanho:
4.93 MB
Formato:
Adobe Portable Document Format
Descrição: