Logo do repositório
 

Deriving vegetation indices for phenology analysis using genetic programming

dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorSantos, Jefersson A. dos
dc.contributor.authorMiranda, Waner O.
dc.contributor.authorAlberton, Bruna [UNESP]
dc.contributor.authorMorellato, Leonor Patrícia Cerdeira [UNESP]
dc.contributor.authorTorres, Ricardo da S.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2015-10-21T13:12:57Z
dc.date.available2015-10-21T13:12:57Z
dc.date.issued2015-03-01
dc.description.abstractPlant phenology studies recurrent plant life cycle events and is a key component for understanding the impact of climate change. To increase accuracy of observations, new technologies have been applied for phenological observation, and one of the most successful strategies relies on the use of digital cameras, which are used as multi-channel imaging sensors to estimate color changes that are related to phenological events. We monitor leaf-changing patterns of a cerrado-savanna vegetation by taking daily digital images. We extract individual plant color information and correlate with leaf phenological changes. For that, several vegetation indices associated with plant species are exploited for both pattern analysis and knowledge extraction. In this paper, we present a novel approach for deriving appropriate vegetation indices from vegetation digital images. The proposed method is based on learning phenological patterns from plant species through a genetic programming framework. A comparative analysis of different vegetation indices is conducted and discussed. Experimental results show that our approach presents higher accuracy on characterizing plant species phenology. (C) 2015 Elsevier B.V. All rights reserved.en
dc.description.affiliationInstitute of Science and Technology, Federal University of São Paulo — UNIFESP, 12247-014 São José dos Campos, SP, Brazil
dc.description.affiliationDepartment of Computer Science, Universidade Federal de Minas Gerais — UFMG, 31270-010 Belo Horizonte, MG, Brazil
dc.description.affiliationRECOD Lab, Institute of Computing, University of Campinas — UNICAMP, 13083-852 Campinas, SP, Brazil.
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Phenology Lab, Dept. of Botany, São Paulo State University — UNESP, 13506-900 Rio Claro, SP, Brazil.
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipMicrosoft Research Virtual Institute
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdMicrosoft Research Virtual Institute: 2010/52113-5
dc.description.sponsorshipIdMicrosoft Research Virtual Institute: 2013/50169-1
dc.description.sponsorshipIdMicrosoft Research Virtual Institute: 2013/50155-0
dc.description.sponsorshipIdFAPESP: 2014/00215-0
dc.description.sponsorshipIdFAPESP: 2007/52015-0
dc.description.sponsorshipIdFAPESP: 2007/59779-6
dc.description.sponsorshipIdFAPESP: 2009/18438-7
dc.description.sponsorshipIdFAPESP: 2010/51307-0
dc.description.sponsorshipIdCNPq: 306243/2010-5
dc.description.sponsorshipIdCNPq: 306587/2009-2
dc.description.sponsorshipIdCNPq: 449638/2014-6
dc.description.sponsorshipIdFAPEMIG: APQ-00768-14
dc.format.extent61-69
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S1574954115000114
dc.identifier.citationEcological Informatics. Amsterdam: Elsevier Science Bv, v. 26, p. 61-69, 2015.
dc.identifier.doi10.1016/j.ecoinf.2015.01.003
dc.identifier.issn1574-9541
dc.identifier.lattes1012217731137451
dc.identifier.urihttp://hdl.handle.net/11449/128742
dc.identifier.wosWOS:000353744700007
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofEcological Informatics
dc.relation.ispartofjcr1.820
dc.relation.ispartofsjr0,778
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjectRemote phenologyen
dc.subjectDigital camerasen
dc.subjectImage analysisen
dc.subjectVegetation indicesen
dc.subjectGenetic programmingen
dc.titleDeriving vegetation indices for phenology analysis using genetic programmingen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes1012217731137451
unesp.author.orcid0000-0001-5265-8988[5]
unesp.author.orcid0000-0002-4998-6996[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Rio Claropt
unesp.departmentBotânica - IBpt

Arquivos