Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Peroxydisulfate activation by CuO pellets in a fixed-bed column, operating mode and assessments for antibiotics degradation and urban wastewater disinfection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

A fixed-bed column packed with copper oxide pellets (FBC-CuO) combined with peroxydisulfate (PDS) as a primary oxidant was assessed as an option for simultaneously wastewater decontamination (antibiotics) and disinfection (bacteria, viruses, and protozoa). Preliminary to these experiments, phenol was used as the target molecule to investigate the working mode of FBC-CuO under various operating conditions, such as varying flow rates, initial persulfate, and phenol concentrations. Then, the removal of a mix of five representative antibiotics (amoxicillin (AMX), cefalexin (CFX), ofloxacin (OFL), sulfamethoxazole (SMX), and clarithromycin (CLA)) in secondary treated urban wastewater (STWW) was evaluated. AMX, CFX, and OFL were effectively removed by simply flowing through the FBC-CuO, and the addition of PDS (500 µM) systematically enhanced the degradation of all targeted antibiotics, which is also the necessary condition for the removal of SMX and CLA. Urban wastewater disinfection was evaluated by monitoring targeted pathogens originally in the STWW. A significant reduction of Escherichia coli, Enterococcus, F-specific RNA bacteriophages was observed after the treatment by FBC-CuO with 500 µM PDS. X-ray diffraction measurement and scanning electron microscopy performed on CuO pellets before and after treatment confirmed that the structure of the catalyst was preserved without any phase segregation. Finally, quantification of Cu(II) at the outlet of FBC-CuO indicate a non-negligible but limited released. All these results underline the potential of the FBC-CuO combined with PDS at the field scale for the degradation of micropollutants and inactivation of pathogens in wastewater.

Descrição

Palavras-chave

Antibiotics, Copper oxide pellet, Disinfection, Fixed-bed column, Operating parameters, Secondary treated wastewater

Idioma

Inglês

Citação

Environmental Science and Pollution Research.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Instituto de Química
IQAR
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso