Logotipo do repositório
 

Publicação:
Lower bounds for the local cyclicity of centers using high order developments and parallelization

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Resumo

We are interested in small-amplitude isolated periodic orbits, so-called limit cycles, surrounding only one equilibrium point, that we locate at the origin. We develop a parallelization technique to study higher order developments, with respect to the parameters, of the return map near the origin. This technique is useful to study lower bounds for the local cyclicity of centers. We denote by M(n) the maximum number of limit cycles bifurcating from the origin via a degenerate Hopf bifurcation for a polynomial vector field of degree n. We get lower bounds for the local cyclicity of some known cubic centers and we prove that M(4) >= 20, M(5) >= 33, M(7) >= 61, M(8) >= 76, and M(9) >= 88. (C) 2020 Elsevier Inc. All rights reserved.

Descrição

Palavras-chave

Small-amplitude limit cycle, Polynomial vector field, Center cyclicity, Lyapunov constants, Higher-order developments and parallelization

Idioma

Inglês

Como citar

Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 271, p. 447-479, 2021.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação