Publicação: Lower bounds for the local cyclicity of centers using high order developments and parallelization
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Resumo
We are interested in small-amplitude isolated periodic orbits, so-called limit cycles, surrounding only one equilibrium point, that we locate at the origin. We develop a parallelization technique to study higher order developments, with respect to the parameters, of the return map near the origin. This technique is useful to study lower bounds for the local cyclicity of centers. We denote by M(n) the maximum number of limit cycles bifurcating from the origin via a degenerate Hopf bifurcation for a polynomial vector field of degree n. We get lower bounds for the local cyclicity of some known cubic centers and we prove that M(4) >= 20, M(5) >= 33, M(7) >= 61, M(8) >= 76, and M(9) >= 88. (C) 2020 Elsevier Inc. All rights reserved.
Descrição
Palavras-chave
Small-amplitude limit cycle, Polynomial vector field, Center cyclicity, Lyapunov constants, Higher-order developments and parallelization
Idioma
Inglês
Como citar
Journal Of Differential Equations. San Diego: Academic Press Inc Elsevier Science, v. 271, p. 447-479, 2021.