Logotipo do repositório
 

Publicação:
Shadowing and structural stability for operators

dc.contributor.authorBernardes Jr, Nilson C.
dc.contributor.authorMessaoudi, Ali [UNESP]
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-30T22:28:33Z
dc.date.available2022-04-30T22:28:33Z
dc.date.issued2021-04-01
dc.description.abstractA well-known result in the area of dynamical systems asserts that any invertible hyperbolic operator on any Banach space is structurally stable. This result was originally obtained by Hartman in 1960 for operators on finite-dimensional spaces. The general case was independently obtained by Palis and Pugh around 1968. We will exhibit a class of examples of structurally stable operators that are not hyperbolic, thereby showing that the converse of the above-mentioned result is false in general. We will also prove that an invertible operator on a Banach space is hyperbolic if and only if it is expansive and has the shadowing property. Moreover, we will show that if a structurally stable operator is expansive, then it must be uniformly expansive. Finally, we will characterize the weighted shifts on the spaces and (<![CDATA[1\leq p) that satisfy the shadowing property.en
dc.description.affiliation1 Departamento de Matemática Aplicada Instituto de Matemática Universidade Federal Do Rio de Janeiro, Caixa Postal 68530
dc.description.affiliationDepartamento de Matemática Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265
dc.description.affiliationUnespDepartamento de Matemática Universidade Estadual Paulista, Rua Cristóvão Colombo, 2265
dc.format.extent961-980
dc.identifierhttp://dx.doi.org/10.1017/etds.2019.107
dc.identifier.citationErgodic Theory and Dynamical Systems, v. 41, n. 4, p. 961-980, 2021.
dc.identifier.doi10.1017/etds.2019.107
dc.identifier.issn1469-4417
dc.identifier.issn0143-3857
dc.identifier.scopus2-s2.0-85078036077
dc.identifier.urihttp://hdl.handle.net/11449/232955
dc.language.isoeng
dc.relation.ispartofErgodic Theory and Dynamical Systems
dc.sourceScopus
dc.subject37B99 (Secondary)
dc.subject37C20
dc.subject37C50
dc.subject47A16 (Primary)
dc.subjectexpansivity
dc.subjecthyperbolicity
dc.subjectlinear operators
dc.subjectshadowing
dc.subjectstructural stability 2010 Mathematics Subject Classification
dc.titleShadowing and structural stability for operatorsen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos