Logotipo do repositório
 

Publicação:
Terrestrial planet formation constrained by mars and the structure of the asteroid belt

dc.contributor.authorIzidoro, André
dc.contributor.authorRaymond, Sean N.
dc.contributor.authorMorbidelli, Alessandro
dc.contributor.authorWinter, Othon C. [UNESP]
dc.contributor.institutionUMR 5804
dc.contributor.institutionMinistry of Education of Brazil
dc.contributor.institutionLaboratoire Lagrange
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:26:24Z
dc.date.available2018-12-11T17:26:24Z
dc.date.issued2015-01-01
dc.description.abstractReproducing the large Earth/Mars mass ratio requires a strong mass depletion in solids within the protoplanetary disc between 1 and 3 au. The Grand Tack model invokes a specific migration history of the giant planets to remove most of themass initially beyond 1 au and to dynamically excite the asteroid belt. However, one could also invoke a steep density gradient created by inward drift and pile-up of small particles induced by gas drag, as has been proposed to explain the formation of close-in super-Earths. Here we show that the asteroid belt's orbital excitation provides a crucial constraint against this scenario for the Solar system. We performed a series of simulations of terrestrial planet formation and asteroid belt evolution starting from discs of planetesimals and planetary embryos with various radial density gradients and including Jupiter and Saturn on nearly circular and coplanar orbits. Discs with shallow density gradients reproduce the dynamical excitation of the asteroid belt by gravitational self-stirring but form Mars analogues significantly more massive than the real planet. In contrast, a disc with a surface density gradient proportional to r-5.5 reproduces the Earth/Mars mass ratio but leaves the asteroid belt in a dynamical state that is far colder than the real belt. We conclude that no disc profile can simultaneously explain the structure of the terrestrial planets and asteroid belt. The asteroid belt must have been depleted and dynamically excited by a different mechanism such as, for instance, in the Grand Tack scenario.en
dc.description.affiliationLaboratoire d'Astrophysique de Bordeaux Université de Bordeaux UMR 5804
dc.description.affiliationCapes Foundation Ministry of Education of Brazil
dc.description.affiliationUniversity of Nice-Sophia Antipolis CNRS Observatoire de la Côte d'Azur Laboratoire Lagrange, BP 4229
dc.description.affiliationCNRS Laboratoire d'Astrophysique de Bordeaux UMR 5804
dc.description.affiliationUNESP Univ. Estadual Paulista - Grupo de Dinmica Orbital and Planetologia Guaratinguetá
dc.description.affiliationUnespUNESP Univ. Estadual Paulista - Grupo de Dinmica Orbital and Planetologia Guaratinguetá
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent3619-3634
dc.identifierhttp://dx.doi.org/10.1093/mnras/stv1835
dc.identifier.citationMonthly Notices of the Royal Astronomical Society, v. 453, n. 4, p. 3619-3634, 2015.
dc.identifier.doi10.1093/mnras/stv1835
dc.identifier.file2-s2.0-84949529425.pdf
dc.identifier.issn1365-2966
dc.identifier.issn0035-8711
dc.identifier.scopus2-s2.0-84949529425
dc.identifier.urihttp://hdl.handle.net/11449/177633
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.relation.ispartofsjr2,346
dc.relation.ispartofsjr2,346
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectMethods: numerical
dc.subjectPlanets and satellites: formation
dc.titleTerrestrial planet formation constrained by mars and the structure of the asteroid belten
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentMatemática - FEGpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84949529425.pdf
Tamanho:
1.24 MB
Formato:
Adobe Portable Document Format
Descrição: