Logo do repositório
 

Failure Probability Metric by Machine Learning for Online Risk Assessment in Distribution Networks

dc.contributor.authorLeite, Jonatas Boas [UNESP]
dc.contributor.authorSanches Mantovani, Jose Roberto [UNESP]
dc.contributor.authorDokic, Tatjana
dc.contributor.authorYan, Qin
dc.contributor.authorChen, Po-Chen
dc.contributor.authorKezunovic, Mladen
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionTexas A&M Univ
dc.date.accessioned2019-10-04T12:32:43Z
dc.date.available2019-10-04T12:32:43Z
dc.date.issued2017-01-01
dc.description.abstractThe risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform.en
dc.description.affiliationSao Paulo State Univ UNESP, Dep Elect Engn, Ilha Solteira, Brazil
dc.description.affiliationTexas A&M Univ, Dep Elect & Comp Engn, College Stn, TX 77843 USA
dc.description.affiliationUnespSao Paulo State Univ UNESP, Dep Elect Engn, Ilha Solteira, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2015/17757-2
dc.description.sponsorshipIdFAPESP: 2015/21972-6
dc.description.sponsorshipIdCNPq: 305371/2012-6
dc.format.extent6
dc.identifier.citation2017 Ieee Pes Innovative Smart Grid Technologies Conference - Latin America (isgt Latin America). New York: Ieee, 6 p., 2017.
dc.identifier.urihttp://hdl.handle.net/11449/185108
dc.identifier.wosWOS:000451380200003
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 Ieee Pes Innovative Smart Grid Technologies Conference - Latin America (isgt Latin America)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectelectricity supply industry
dc.subjectfailure probability
dc.subjectgeographic information systems
dc.subjectpower distribution
dc.subjectrisk analysis
dc.titleFailure Probability Metric by Machine Learning for Online Risk Assessment in Distribution Networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos