Dimensional reduction and localization of a Bose-Einstein condensate in a quasi-1D bichromatic optical lattice
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Arquivos
Fontes externas
Fontes externas
Resumo
We analyze the localization of a Bose-Einstein condensate in a one-dimensional bichromatic quasi-periodic optical-lattice potential by numerically solving the 1D Gross-Pitaevskii equation (1D GPE). We first derive the 1D Gross-Pitaevskii equation from the dimensional reduction of the 3D quantum field theory of interacting bosons obtaining two coupled differential equations (for axial wave fuction and space-time dependent transverse width) which reduce to the 1D Gross-Pitaevskii equation under strict conditions. Then, by using the 1D Gross-Pitaevskii equation we report the suppression of localization in the interacting Bose-Einstein condensate when the repulsive scattering length between bosonic atoms is sufficiently large.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Acta Physica Polonica A, v. 128, n. 6, p. 979-982, 2015.




