Logo do repositório

On the major role played by the lumen curvature of intracranial aneurysms walls in determining their mechanical response, local hemodynamics, and rupture likelihood

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The properties of intracranial aneurysms (IAs) walls are known to be driven by the underlying hemodynamics adjacent to the IA sac. Different pathways exist explaining the connections between hemodynamics and local tissue properties. The emergence of such theories is essential if one wishes to compute the mechanical response of a patient-specific IA wall and predict its rupture. Apart from the hemodynamics and tissue properties, one could assume that the mechanical response also depends on the local morphology, more specifically, the curvature of the luminal surface, with larger values at highly-curved wall portions. Nonetheless, this contradicts observations of IA rupture sites more often found at the dome, where the curvature is lower. This seeming contradiction indicates a complex interaction between the hemodynamics adjacent to the aneurysm wall, its morphology, and mechanical response, which warrants further investigation. This was the main goal of this work. We accomplished this by analyzing the stress and stretch fields in different regions of the wall for a sample of IAs, which have been classified based on particular hemodynamics conditions and lumen curvature. Pulsatile numerical simulations were performed using the one-way fluid-solid interaction strategy implemented in OpenFOAM (solids4foam toolbox). We found that the variable best correlated with regions of high stress and stretch was the lumen curvature. Additionally, our data suggest a connection between the local curvature and particular hemodynamics conditions adjacent to the wall, indicating that the lumen curvature is a property that could be used to assess both mechanical response and hemodynamic conditions, and, moreover, suggest new rupture indicators based on the curvature.

Descrição

Palavras-chave

Abnormal hemodynamics, Intracranial aneurysms, Lumen curvature, Mechanical response, Numerical simulations, Rupture likelihood

Idioma

Inglês

Citação

Computers in Biology and Medicine, v. 163.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Engenharia
FEB
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso