Logotipo do repositório
 

Publicação:
Comparativo de alguns modelos de machine learning utilizando dados de domínio público e a linguagem python

dc.contributor.advisorLopes, Mara Lúcia Martins [UNESP]
dc.contributor.authorViana, Wesley Muller Oliveira
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-09-22T18:48:19Z
dc.date.available2021-09-22T18:48:19Z
dc.date.issued2021-08-27
dc.description.abstractThere are many applications of machine learning models in various areas, and it is an area of research with continuous development. This work proposes a study of 5 classifier models with supervised learning. Using the Python programming language and some libraries allows the improvement in the approach to prevent credit card fraud. For the development of the work, a public database of European credit card transactions was used to minimize the data modeling problems arising from the imbalanced data. Two data split techniques were also tested (undersampling and oversampling) to obtain the best performance of the models analyzed. This performance was evaluated using some performance metrics such as accuracy, f1-score, precision, and recall. The academic work explores possible improvements for further work, such as dimensionality reduction of the feature dataset, parameter optimization of the tested models, and regularization of the modeling using penalization for the optimizers.en
dc.description.abstractSão muitas as aplicações de modelos de machine learning em situações de diversas áreas, sendo uma área de pesquisa com desenvolvimento contínuo. Este trabalho propõe um estudo de 5 modelos classificadores com aprendizagem supervisionada. Utilizando a linguagem Python e algumas bibliotecas dessa ferramenta que permitem a melhoria na abordagem do problema de fraude em uma transação. Para o desenvolvimento do trabalho, uma base de dados pública de transações europeias foi utilizada de forma a minimizar os problemas de modelagem decorrentes do desbalanceamento de classes no conjunto de dados. Foram ainda testadas duas técnicas de partição de dados – Hold-out e validação cruzada - com reamostragem com e sem reposição, de forma a se obter a melhor performance para os modelos analisados. Esta performance foi avaliada utilizando algumas métricas de desempenho: acurácia, f1-score, precisão e recall. Ainda, o trabalho explora possíveis melhorias para continuidade de trabalhos futuros como: a diminuição da dimensionalidade do conjunto de features através de PCA, otimização de parâmetros dos modelos testados e a regularização da modelagem utilizando ferramentas de penalização dos otimizadores.pt
dc.description.sponsorshipNão recebi financiamento
dc.identifier.urihttp://hdl.handle.net/11449/214516
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectNaive Bayesen
dc.subjectMachine learningen
dc.subjectLogistic regressionen
dc.subjectNaive-bayesen
dc.subjectDecision treeen
dc.subjectTransaction classificationen
dc.subjectMachine Learningpt
dc.subjectRegressão Logísticapt
dc.subjectSVMpt
dc.subjectÁrvore de decisãopt
dc.subjectKNNpt
dc.subjectClassificação de transaçõespt
dc.titleComparativo de alguns modelos de machine learning utilizando dados de domínio público e a linguagem pythonpt
dc.title.alternativeComparison of some machine learning models using public data and python programming languageen
dc.title.alternativeComparación de algunos modelos de aprendizaje de máquinas utilizando datos de dominio público y lenguaje de programación pythones
dc.typeTrabalho de conclusão de cursopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.undergraduateEngenharia Elétrica - feispt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
viana_wmo_tcc_ilha.pdf
Tamanho:
1.46 MB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.43 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
viana_wmo_autorizacao_ilha.pdf
Tamanho:
68.92 KB
Formato:
Adobe Portable Document Format
Descrição: