Logotipo do repositório
 

Publicação:
A Hermite polynomial algorithm for detection of lesions in lymphoma images

dc.contributor.authorMartins, Alessandro S.
dc.contributor.authorNeves, Leandro A. [UNESP]
dc.contributor.authorde Faria, Paulo R.
dc.contributor.authorTosta, Thaína A. A.
dc.contributor.authorLongo, Leonardo C. [UNESP]
dc.contributor.authorSilva, Adriano B.
dc.contributor.authorRoberto, Guilherme Freire
dc.contributor.authordo Nascimento, Marcelo Z.
dc.contributor.institutionFederal Institute of Triângulo Mineiro (IFTM)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2021-06-25T10:44:33Z
dc.date.available2021-06-25T10:44:33Z
dc.date.issued2021-05-01
dc.description.abstractThere are different types of lesions that can be investigated with the hematoxylin–eosin staining protocol. Lymphoma is a type of malignant disease which affects one of the highest white blood cell populations responsible for the immunological defence system. There are lymphoma sub-types that can have similar features, which make their diagnoses a difficult task. In this study, we investigated algorithms based on multiscale and multidimensional fractal geometry with colour models for classification of lymphoma images. Fractal features were extracted from the colour models and separate channels from these models. These features were concatenated to form feature vectors. Finally, we investigated the Hermite polynomial classifier and machine learning algorithms in order to evaluate the performance of the proposed approach. We employed the tenfold cross-validation method and evaluated the lesion sub-types with the binary and multiclass classifications. The separated colour channels obtained from histological images achieved relevant values for the binary and multiclass classifications, with an accuracy rating between 91 and 97%. These results can contribute to the detection and classification of the lesions by supporting specialists in clinical practices.en
dc.description.affiliationFederal Institute of Triângulo Mineiro (IFTM), Rua Belarmino Vilela Junqueira sn
dc.description.affiliationDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265
dc.description.affiliationDepartment of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia
dc.description.affiliationScience and Technology Institute Federal University of São Paulo (UNIFESP), Avenida Cesare Mansueto Giulio Lattes, 1201
dc.description.affiliationFaculty of Computer Science (FACOM) Federal University of Uberlândia (UFU), Avenida João Neves de Ávila 2121, Bl.B
dc.description.affiliationUnespDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCNPq: (#304848/2018-2)
dc.description.sponsorshipIdCNPq: (#313365/2018-0)
dc.description.sponsorshipIdCNPq: (#427114/2016-0)
dc.description.sponsorshipIdCNPq: (#430965/2018-4)
dc.description.sponsorshipIdFAPEMIG: (#APQ-00578-18)
dc.format.extent523-535
dc.identifierhttp://dx.doi.org/10.1007/s10044-020-00927-z
dc.identifier.citationPattern Analysis and Applications, v. 24, n. 2, p. 523-535, 2021.
dc.identifier.doi10.1007/s10044-020-00927-z
dc.identifier.issn1433-755X
dc.identifier.issn1433-7541
dc.identifier.scopus2-s2.0-85096065400
dc.identifier.urihttp://hdl.handle.net/11449/206832
dc.language.isoeng
dc.relation.ispartofPattern Analysis and Applications
dc.sourceScopus
dc.subjectClassification
dc.subjectColour fractal
dc.subjectColour spaces
dc.subjectHermite polynomial
dc.subjectLymphoma
dc.titleA Hermite polynomial algorithm for detection of lesions in lymphoma imagesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-4635-5037[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos