Logo do repositório

Selective inhibitory activity of multidrug-resistant bacteria by zinc oxide nanoparticles

dc.contributor.authorMarques, Gleison N.
dc.contributor.authorMoreira, Ailton José [UNESP]
dc.contributor.authorNóbrega, Eryka Thamyris D.
dc.contributor.authorBraga, Sandalene
dc.contributor.authorArgentin, Marcela N.
dc.contributor.authorda Cunha Camargo, Ilana L.B.
dc.contributor.authorAzevedo, Emilio
dc.contributor.authorPereira, Ernesto C.
dc.contributor.authorBernardi, Maria Inês B.
dc.contributor.authorMascaro, Lucia H.
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCiência e Tecnologia do Maranhão (IFMA)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2025-04-29T18:07:33Z
dc.date.issued2024-02-01
dc.description.abstractThe emergence of multidrug-resistant bacteria has attracted much attention from the global community due to their potential to cause harm to health. In this context, ZnO nanoparticles (NPs) produced under different synthesis conditions were successfully applied to inhibit several species of multiresistant bacteria from clinical isolates. Five gram-positive (Staphylococcus epidermidis ATCC 35984, Staphylococcus aureus ATCC 25923, S. aureus ATCC 8095, Enterococcus faecalis ATCC 29212, and Enterococcus faecium ATCC 700221) and four gram-negative bacterial isolates (Klebsiella pneumoniae ATCC 700603, Escherichia coli ATCC 25922, Acinetobacter baumannii ATCC 19606, and Pseudomonas aeruginosa ATCC 27853), known to be involved in healthcare-associated infections and multidrug resistance, were selected for this study. Due to their physicochemical properties, we found that ZnO NPs can exhibit selective inhibition. The minimum inhibitory concentration (MIC) for multidrug-resistant bacteria sensitive to ZnO NPS was determined from varying contact time and catalyst concentration from exhaustive tests. Different characterization techniques were studied to determine the crystalline, optical, morphological, and photocatalytic characteristics of ZnO NPs. The bacterial inhibition mechanisms were discussed in detail with support of photocatalytic assays and cytotoxicity of plant species. In addition, ZnO NPs have also shown great potential for application in the environmental remediation of ecosystems contaminated by organic pollutants due to their efficiency in degrading the dye methylene blue (MB) under UV light with a photocatalytic efficiency of 75% in 60 min. The ZnO NPs showed great potential for multidrug-resistant bacteria, with MICs ranging from 256 to 512 mg/L. This demonstrates that the ZnO NPs produced here have the potential to be used as a technology with great application potential in materials used in hospital environments to mitigate the growth and development of these classes of multi-resistant bacteria.en
dc.description.affiliationCDMF LIEC Universidade Federal de São Carlos (UFSCar), SP
dc.description.affiliationInstituto de Química (IQ) Universidade Estadual Paulista (UNESP), SP
dc.description.affiliationInstituto Federal de Educação Ciência e Tecnologia do Maranhão (IFMA), Monte Castelo, MA
dc.description.affiliationLaboratório de Epidemiologia e Microbiologia Moleculares Departamento de Física e Ciências Interdisciplinares Instituto de Física de São Carlos Universidade de São Paulo, SP
dc.description.affiliationInstituto de Física de São Carlos Universidade de São Paulo (IFSC-USP), SP
dc.description.affiliationUnespInstituto de Química (IQ) Universidade Estadual Paulista (UNESP), SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFinanciadora de Estudos e Projetos
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFinanciadora de Estudos e Projetos: 01.22.0179
dc.description.sponsorshipIdFAPESP: 2013/07296–2
dc.description.sponsorshipIdFAPESP: 2013/07600–3
dc.description.sponsorshipIdFAPESP: 2021/06128–5
dc.description.sponsorshipIdFAPESP: 2022/05254–0
dc.description.sponsorshipIdFAPESP: 2022/06219–3
dc.description.sponsorshipIdFAPESP: 22/07984–5
dc.identifierhttp://dx.doi.org/10.1016/j.jece.2023.111870
dc.identifier.citationJournal of Environmental Chemical Engineering, v. 12, n. 1, 2024.
dc.identifier.doi10.1016/j.jece.2023.111870
dc.identifier.issn2213-3437
dc.identifier.scopus2-s2.0-85182405703
dc.identifier.urihttps://hdl.handle.net/11449/297737
dc.language.isoeng
dc.relation.ispartofJournal of Environmental Chemical Engineering
dc.sourceScopus
dc.subjectAntibacterial activity. Photocatalysis. Environmental pollution. Chemometrics. Nanomaterials
dc.titleSelective inhibitory activity of multidrug-resistant bacteria by zinc oxide nanoparticlesen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos