Repository logo
 

Publication:
Aluminum prevents stomatal conductance from responding to vapor pressure deficit in Citrus limonia

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

Stomatal aperture generally increases in response to low vapor pressure deficit (VPD) and decreases at high VPD. Aluminum (Al) inhibits root growth, indirectly exposing the roots to low water availability, which may decrease leaf hydration and, consequently, the stomatal conductance (gs). In this study, Citrus limonia (‘Rangpur’ lime) was grown in nutrient solution with 1480 μM Al for 90 days, and we expected that the presence of Al could prevent gs from responding to VPD. As expected, gs did not respond to the increase in VPD in plants exposed to Al. Aluminum also reduced the relative water content and midday leaf water potential (Ψmd) after 60 and 90 days. The CO2 assimilation rate (A) followed the same response pattern exhibited by gs, the estimation of the carboxylation efficiency was not reduced in plants exposed to Al and measured under drier air, while photochemical responses were slightly reduced in plants exposed to Al, indicating that the Al-induced decrease in A was dependent on gs and less ascribed to low photochemical performance. Like in drought conditions, the long-term exposure to Al reduces leaf hydration and compromises gs responses to the atmosphere, eventually impairing A in ‘Rangpur’ lime plants.

Description

Keywords

Indirect Al effect, Leaf gas exchange, Leaf hydration, ‘Rangpur’ lime

Language

English

Citation

Environmental and Experimental Botany, v. 155, p. 662-671.

Related itens

Units

Departments

Undergraduate courses

Graduate programs