Logotipo do repositório
 

Publicação:
Electrochemically assisted photocatalysis: Highly efficient treatment using thermal titanium oxides doped and non-doped electrodes for water disinfection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Electrochemically assisted photocatalysis (by electronic drainage) is a highly promising method for disinfection of water. In this research, the efficiency of photolytic oxidation using UV-A radiation and electrochemically assisted photocatalysis (with electric potential of 1.5 V) was studied by using electrodes prepared by thermal treatment and doped with silver, for inactivation of Escherichia coli and Staphylococcus aureus. The Chick-Watson microorganism inactivation model was applied and the electrical energy consumption of the process was calculated. It was observed no significant inactivation of microorganisms when UV-A light or electric potential were applied separately. However, the electrochemically assisted photocatalytic process, with Ag-doped electrode completely inactivated the microbial population after 10 (E. coli) and 60 min (S. aureus). The best performing non-doped electrodes achieved 52.74% (E. coli) and 44.09% (S. aureus) inactivation rates after 60 min. Thus, electrochemically assisted photocatalytic activity was not only effective for the inactivation of microorganisms, but also notably low on electrical energy consumption during the treatment due to small current and low electric potential applied.

Descrição

Palavras-chave

Ag-doped electrodes, Bacterial inactivation, Electron drainage, Kinetics study, Thermal oxides

Idioma

Inglês

Como citar

Journal of Environmental Management, v. 204, p. 255-263.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação