Logotipo do repositório
 

Publicação:
Pore size evolution during sintering of ceramic oxides

dc.contributor.authorVarela, José Arana [UNESP]
dc.contributor.authorWhittemore, O. J.
dc.contributor.authorLongo, Elson [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Washington
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2014-05-27T09:55:45Z
dc.date.available2014-05-27T09:55:45Z
dc.date.issued1990-12-01
dc.description.abstractThis paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.en
dc.description.affiliationInstituto de Quimica UNESP, CP 355, 14800 Araraquara Sao Paulo State
dc.description.affiliationUniversity of Washington, FB-10, Seattle, WA 98195
dc.description.affiliationUnespInstituto de Quimica UNESP, CP 355, 14800 Araraquara Sao Paulo State
dc.format.extent177-189
dc.identifierhttp://dx.doi.org/10.1016/0272-8842(90)90053-I
dc.identifier.citationCeramics International, v. 16, n. 3, p. 177-189, 1990.
dc.identifier.doi10.1016/0272-8842(90)90053-I
dc.identifier.issn0272-8842
dc.identifier.scopus2-s2.0-0025244495
dc.identifier.urihttp://hdl.handle.net/11449/64025
dc.language.isoeng
dc.relation.ispartofCeramics International
dc.relation.ispartofjcr3.057
dc.relation.ispartofsjr0,784
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectOxides - Porosity
dc.subjectParticle Size Analysis
dc.subjectParticle Size Distribution
dc.subjectSintering Mechanisms
dc.subjectCeramic Materials
dc.titlePore size evolution during sintering of ceramic oxidesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentFísico-Química - IQARpt

Arquivos