Publicação:
Automation in fault detection using neural network and model updating

dc.contributor.authorPereira, João Antonio [UNESP]
dc.contributor.authorLopes Jr., Vicente [UNESP]
dc.contributor.authorWeber, Hans Ingo
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:19:43Z
dc.date.available2014-05-27T11:19:43Z
dc.date.issued1999-03-01
dc.description.abstractIn this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.en
dc.description.affiliationUNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SP
dc.description.affiliationUNICAMP - Univ. Estadual de Campinas Faculdade de Engenharia Mecanica Depto. de Projeto Mecânico, 13083-970 Campinas, SP
dc.description.affiliationUnespUNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SP
dc.format.extent99-108
dc.identifierhttp://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf
dc.identifier.citationRevista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999.
dc.identifier.file2-s2.0-0032678595.pdf
dc.identifier.issn0100-7386
dc.identifier.lattes0224087261544502
dc.identifier.scopus2-s2.0-0032678595
dc.identifier.urihttp://hdl.handle.net/11449/65736
dc.language.isoeng
dc.relation.ispartofRevista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectDynamic response
dc.subjectLearning systems
dc.subjectMaintenance
dc.subjectMathematical models
dc.subjectStructural analysis
dc.subjectFault detection
dc.subjectStructural health monitoring
dc.subjectNeural networks
dc.titleAutomation in fault detection using neural network and model updatingen
dc.typeArtigo
dcterms.licensehttp://www.scielo.br/revistas/jbsms/paboutj.htm#Copyright
dspace.entity.typePublication
unesp.author.lattes0224087261544502
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-0032678595.pdf
Tamanho:
21.74 MB
Formato:
Adobe Portable Document Format