Fenichel theory for multiple time scale singular perturbation problems
dc.contributor.author | Cardin, Pedro Toniol [UNESP] | |
dc.contributor.author | Teixeira, Marco Antonio | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2018-12-11T17:15:29Z | |
dc.date.available | 2018-12-11T17:15:29Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | This paper is concerned with a geometric study of singularly perturbed systems of ordinary differential equations expressed by (n-1)-parameter families of smooth vector fields on ℝl, where n ≥ 2. The inherent characteristic of such systems is the presence of an arbitrary number n of time scales. For n = 2, the proposed geometric approach in this paper reports to Fenichel theory of fast-slow systems [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98]. We extend the three main theorems due to Fenichel [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53-98] to systems involving any number of time scales. | en |
dc.description.affiliation | Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266 | |
dc.description.affiliation | Departamento de Matemática Instituto de Matemática Estatística e Computação Científica Universidade Estadual de Campinas (UNICAMP), Rua Sérgio Buarque de Holanda, 651 | |
dc.description.affiliationUnesp | Departamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista (UNESP), Rua Rio de Janeiro, 266 | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2012/18780-0 | |
dc.description.sponsorshipId | FAPESP: 2013/21947-6 | |
dc.description.sponsorshipId | FAPESP: 2013/24541-0 | |
dc.description.sponsorshipId | CNPq: 300596/2009-0 | |
dc.description.sponsorshipId | CAPES: 88881.030454/2013-01 | |
dc.format.extent | 1425-1452 | |
dc.identifier | http://dx.doi.org/10.1137/16M1067202 | |
dc.identifier.citation | SIAM Journal on Applied Dynamical Systems, v. 16, n. 3, p. 1425-1452, 2017. | |
dc.identifier.doi | 10.1137/16M1067202 | |
dc.identifier.issn | 1536-0040 | |
dc.identifier.lattes | 8032879915906661 | |
dc.identifier.orcid | 0000-0002-8723-8200 | |
dc.identifier.scopus | 2-s2.0-85031814314 | |
dc.identifier.uri | http://hdl.handle.net/11449/175363 | |
dc.language.iso | eng | |
dc.relation.ispartof | SIAM Journal on Applied Dynamical Systems | |
dc.relation.ispartofsjr | 1,040 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Fenichel theory | |
dc.subject | Multiple time scales | |
dc.subject | Singular perturbation | |
dc.title | Fenichel theory for multiple time scale singular perturbation problems | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 8032879915906661[1] | |
unesp.author.orcid | 0000-0002-8723-8200[1] | |
unesp.department | Matemática - FEIS | pt |