Logotipo do repositório
 

Publicação:
Ab lnitio Simulations and Materials Chemistry in the Age of Big Data

dc.contributor.authorSchleder, Gabriel Ravanhani
dc.contributor.authorPadilha, Antonio Claudio M.
dc.contributor.authorRocha, Alexandre Reily [UNESP]
dc.contributor.authorDalpian, Gustavo Martini
dc.contributor.authorFazzio, Adalberto
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionBrazilian Nanotechnol Natl Lab LNNano CNPEM
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:51:01Z
dc.date.available2020-12-10T19:51:01Z
dc.date.issued2020-02-01
dc.description.abstractIn this perspective, we discuss computational advances in the last decades, both in algorithms as well as in technologies, that enabled the development, widespread use, and maturity of simulation methods for molecular and materials systems. Such advances led to the generation of large amounts of data, which required the creation of several computational databases. Within this scenario, with the democratization of data access, the field now encounters several opportunities for data-driven approaches toward chemical and materials problems. Specifically, machine learning methods for predictions of novel materials or properties are being increasingly used with great success. However, black box usage fails in many instances; several technical details require expert knowledge in order for the predictions to be useful, such as with descriptors and algorithm selection. These approaches represent a direction for further developments, notably allowing advances for both developed and emerging countries with modest computational infrastructures.en
dc.description.affiliationFed Univ ABC UFABC, Santo Andre, SP, Brazil
dc.description.affiliationBrazilian Nanotechnol Natl Lab LNNano CNPEM, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Inst Fis Teor, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Inst Fis Teor, Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2017/18139-6
dc.description.sponsorshipIdFAPESP: 18/05565-0
dc.description.sponsorshipIdFAPESP: 17/02317-2
dc.format.extent452-459
dc.identifierhttp://dx.doi.org/10.1021/acs.jcim.9b00781
dc.identifier.citationJournal Of Chemical Information And Modeling. Washington: Amer Chemical Soc, v. 60, n. 2, p. 452-459, 2020.
dc.identifier.doi10.1021/acs.jcim.9b00781
dc.identifier.issn1549-9596
dc.identifier.urihttp://hdl.handle.net/11449/196627
dc.identifier.wosWOS:000516665600005
dc.language.isoeng
dc.publisherAmer Chemical Soc
dc.relation.ispartofJournal Of Chemical Information And Modeling
dc.sourceWeb of Science
dc.titleAb lnitio Simulations and Materials Chemistry in the Age of Big Dataen
dc.typeArtigo
dcterms.rightsHolderAmer Chemical Soc
dspace.entity.typePublication
unesp.author.orcid0000-0001-8874-6947[3]
unesp.author.orcid0000-0001-5384-7676[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos