Logo do repositório
 

Reliability analysis using experimental statistical methods and ais: Application in continuous flow tubes of gaseous medium

dc.contributor.authorOuta, Roberto
dc.contributor.authorChavarette, Fábio Roberto [UNESP]
dc.contributor.authorGonçalves, Aparecido Carlos [UNESP]
dc.contributor.authorda Silva, Sidney Leal
dc.contributor.authorMishra, Vishnu Narayan
dc.contributor.authorPanosso, Alan Rodrigo [UNESP]
dc.contributor.authorMishra, Lakshmi Narayan
dc.contributor.institutionFatec Fernando Amaral de Almeida Prado
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFaculdade de Tecnologia Itaquera Miguel Reale
dc.contributor.institutionIndira Gandhi National Tribal University
dc.contributor.institutionVellore Institute of Technology
dc.date.accessioned2022-05-01T11:23:37Z
dc.date.available2022-05-01T11:23:37Z
dc.date.issued2021-08-20
dc.description.abstractThe motivation for the development of this work arose from the observation of maintenance in pressure vessels, which are categorized as highly hazardous security risk products. The costs of detecting failures in the production systems allow the result of the process to be safe and of good quality, using standardized tests internally within the company. The main objective of this work demonstrates the efficiency and robustness of the artificial immune system (AIS) of negative selection in the detection of failures by recognizing the vibration signals and categorizing them in the degree of probability and level of severity of failures. The intrinsic objectives are the application of the elimination of signal noise by the Wiener filter, and the processing of data-Wiener data using experimental statistics. The result of this work successfully demonstrates the precision between the experimental statistical and AIS techniques of negative selection; the robustness of the algorithm in precision and signal recognition; and the classification of the degree of severity and probability of failure.en
dc.description.affiliationDepartamento de Biocombustíveis Fatec Fernando Amaral de Almeida Prado, São Paulo
dc.description.affiliationDepartamento de Engenharia Física e Matemática Instituto de Química Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Prof. Francisco Degni, 55, Quitandinha, São Paulo
dc.description.affiliationDepartamento de Engenharia Mecânica Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo
dc.description.affiliationDepartamento de Processo de Soldagem Faculdade de Tecnologia Itaquera Miguel Reale, São Paulo
dc.description.affiliationDepartment of Mathematics Indira Gandhi National Tribal University, Madhya Pradesh
dc.description.affiliationDepartamento de Engenharia e Ciências Exatas Universidade Estadual Paulista “Júlio Mesquita Filho”, São Paulo
dc.description.affiliationDepartment of Mathematics School of Advanced Sciences Vellore Institute of Technology, Tamil Nadu
dc.description.affiliationUnespDepartamento de Engenharia Física e Matemática Instituto de Química Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Prof. Francisco Degni, 55, Quitandinha, São Paulo
dc.description.affiliationUnespDepartamento de Engenharia Mecânica Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo
dc.description.affiliationUnespDepartamento de Engenharia e Ciências Exatas Universidade Estadual Paulista “Júlio Mesquita Filho”, São Paulo
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2019 / 10515-4
dc.identifierhttp://dx.doi.org/10.4025/ACTASCITECHNOL.V43I1.55825
dc.identifier.citationActa Scientiarum - Technology, v. 43.
dc.identifier.doi10.4025/ACTASCITECHNOL.V43I1.55825
dc.identifier.issn1807-8664
dc.identifier.issn1806-2563
dc.identifier.scopus2-s2.0-85121286741
dc.identifier.urihttp://hdl.handle.net/11449/233902
dc.language.isoeng
dc.relation.ispartofActa Scientiarum - Technology
dc.sourceScopus
dc.subjectArtificial immune systems
dc.subjectExperimental statistical methods
dc.subjectFlow tubes
dc.subjectNegative selection algorithm
dc.subjectStructural health monitoring
dc.titleReliability analysis using experimental statistical methods and ais: Application in continuous flow tubes of gaseous mediumen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Mecânica - FEISpt
unesp.departmentMatemática - FEISpt

Arquivos