Logo do repositório

Strain-polarization coupling mechanism of enhanced conductivity at the grain boundaries in BiFeO3 thin films

dc.contributor.authorAlikin, Denis
dc.contributor.authorFomichov, Yevhen
dc.contributor.authorReis, Saulo Portes [UNESP]
dc.contributor.authorAbramov, Alexander
dc.contributor.authorChezganov, Dmitry
dc.contributor.authorShur, Vladimir
dc.contributor.authorEliseev, Eugene
dc.contributor.authorKalinin, Sergei V.
dc.contributor.authorMorozovska, Anna
dc.contributor.authorAraujo, Eudes B. [UNESP]
dc.contributor.authorKholkin, Andrei
dc.contributor.institutionUral Fed Univ
dc.contributor.institutionCharles Univ Prague
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFed Inst Educ Sci & Technol Sao Paulo
dc.contributor.institutionNatl Acad Sci Ukraine
dc.contributor.institutionOak Ridge Natl Lab
dc.contributor.institutionUniv Aveiro
dc.date.accessioned2021-06-25T12:28:35Z
dc.date.available2021-06-25T12:28:35Z
dc.date.issued2020-09-01
dc.description.abstractCharge transport across the interfaces in complex oxides attracts a lot of attention because it allows creating novel functionalities useful for device applications. It has been observed that movable domain walls in epitaxial BiFeO3 films possess enhanced conductivity that can be used for reading out in ferroelectricbased memories. In this work, the relation between the polarization, strain and conductivity in sol-gel BiFeO3 films with special emphasis on grain boundaries as natural interfaces in polycrystalline ferroelectrics is investigated. The interaction between polarization and grain boundaries occuring at elevated temperatures during or after material sintering stage leads to the formation of branched network of highly conductive grain boundaries with the electrical conductivity about two orders higher than in the bulk. At room temperature, these conductive traces stabilized by the defects remain and do not change upon polarization switching. These collective states provide further insight into the physics of complex oxide ferroelectrics and may strongly affect their practical applications, because reveal an additional mechanism of the leakage current in such systems. (c) 2020 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUral Fed Univ, Sch Nat Sci & Math, Ekaterinburg 620100, Russia
dc.description.affiliationCharles Univ Prague, Fac Math & Phys, Prague 18000 8, Czech Republic
dc.description.affiliationSao Paulo State Univ, Dept Chem & Phys, Ilha Solteira, SP, Brazil
dc.description.affiliationFed Inst Educ Sci & Technol Sao Paulo, BR-15503110 Votuporanga, Brazil
dc.description.affiliationNatl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine
dc.description.affiliationOak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
dc.description.affiliationNatl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine
dc.description.affiliationUniv Aveiro, Dept Phys, P-3810193 Aveiro, Portugal
dc.description.affiliationUniv Aveiro, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
dc.description.affiliationUnespSao Paulo State Univ, Dept Chem & Phys, Ilha Solteira, SP, Brazil
dc.description.sponsorshipRussian Science Foundation
dc.description.sponsorshipFCT/MEC
dc.description.sponsorshipFEDER
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipMarie Sklodowska-Curie Research and Innovation StaffExchange program
dc.description.sponsorshipDOE BES scientific user facility division
dc.description.sponsorshipIdRussian Science Foundation: 19-72-10076
dc.description.sponsorshipIdFCT/MEC: UIDB/50011/2020
dc.description.sponsorshipIdFCT/MEC: UIDP/50011/2020
dc.description.sponsorshipIdFAPESP: 2017/13769-1
dc.description.sponsorshipIdCNPq: 304604/2015-1
dc.description.sponsorshipIdCNPq: 400677/2014-8
dc.description.sponsorshipIdCAPES: 88881.310513/2018-01
dc.description.sponsorshipIdMarie Sklodowska-Curie Research and Innovation StaffExchange program: 778070
dc.format.extent7
dc.identifierhttp://dx.doi.org/10.1016/j.apmt.2020.100740
dc.identifier.citationApplied Materials Today. Amsterdam: Elsevier, v. 20, 7 p., 2020.
dc.identifier.doi10.1016/j.apmt.2020.100740
dc.identifier.issn2352-9407
dc.identifier.urihttp://hdl.handle.net/11449/209767
dc.identifier.wosWOS:000598355700004
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofApplied Materials Today
dc.sourceWeb of Science
dc.subjectbismuth ferrite
dc.subjectgrain boundaries
dc.subjectconductivity
dc.subjectinterfaces
dc.subjectdomain structure
dc.titleStrain-polarization coupling mechanism of enhanced conductivity at the grain boundaries in BiFeO3 thin filmsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0001-9002-5831[2]
unesp.author.orcid0000-0002-8505-458X[9]
unesp.departmentFísica e Química - FEISpt

Arquivos