Logo do repositório
 

Involutions fixing F-n U F-3

dc.contributor.authorBarbaresco, Evelin M. [UNESP]
dc.contributor.authorPergher, Pedro L. Q.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-11-26T17:49:03Z
dc.date.available2018-11-26T17:49:03Z
dc.date.issued2018-04-01
dc.description.abstractLet Mm be a closed smooth manifold equipped with a smooth involution having fixed point set of the form F-n U F-3, where F-n and F-3 are submanifolds with dimensions n and 3, respectively, where 3 < n < m and with the normal bundles over F-n and F-3 being nonbounding. The authors of this paper, together with Patricia E. Desideri, previously showed that, when n is even, then m <= n + 4, which we call a small codimension phenomenon.-Further, they showed that this small bound is.best posiible. In this paper we study this problem for n odd, which is much more complicated, requiring more sophisticated techniques involving characteristic numbers. We show in this case that'm <= M(n - 3) + 6, where M(n) is the Stong Pergher number (see the definition of M(n) in Section 1). Further, we show that this bound is almost best possible, in the sense that there exists an example with m = M(n - 3) + 5, which means that for n odd the small codimension phenomenon does not occur and the bound in question is meaningful. The existence of these bounds is guaranteed by the famous Five Halves Theorem of J. Boardman, which establishes that, under the above hypotheses, m <= 5/2 n. (C) 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista Ibilce, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Matemat, Caixa Postal 676, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista Ibilce, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent807-818
dc.identifierhttp://dx.doi.org/10.1016/j.indag.2018.01.003
dc.identifier.citationIndagationes Mathematicae-new Series. Amsterdam: Elsevier Science Bv, v. 29, n. 2, p. 807-818, 2018.
dc.identifier.doi10.1016/j.indag.2018.01.003
dc.identifier.fileWOS000429511400019.pdf
dc.identifier.issn0019-3577
dc.identifier.urihttp://hdl.handle.net/11449/164082
dc.identifier.wosWOS:000429511400019
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofIndagationes Mathematicae-new Series
dc.relation.ispartofsjr0,685
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectInvolution
dc.subjectFixed-data
dc.subjectWhitney number
dc.subjectWu formula
dc.subjectSteenrod operation
dc.subjectStong-Pergher number
dc.titleInvolutions fixing F-n U F-3en
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000429511400019.pdf
Tamanho:
270.12 KB
Formato:
Adobe Portable Document Format
Descrição: