Logotipo do repositório
 

Publicação:
Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Resenha

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM's high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions.

Descrição

Palavras-chave

Artificial neural network, Clustering, Coherent optical OFDM, Fiber optics communications, Machine learning, Nonlinear equalization, Support vector machine

Idioma

Inglês

Como citar

Future Internet, v. 11, n. 1, 2018.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação