Logotipo do repositório
 

Publicação:
Determining spatial resolution in spatial load forecasting using a grid-based model

dc.contributor.authorMelo, Joel D. [UNESP]
dc.contributor.authorCarreno, Edgar M.
dc.contributor.authorCalvino, Aida
dc.contributor.authorPadilha-Feltrin, Antonio [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual do Oeste do Paraná (UNIOESTE)
dc.contributor.institutionUniv Cantabria
dc.date.accessioned2014-12-03T13:11:50Z
dc.date.available2014-12-03T13:11:50Z
dc.date.issued2014-06-01
dc.description.abstractThis paper presents a grid-based model that aims to find a suitable spatial resolution to improve visualization and inference of the results of spatial load forecasting for feeders and/or distribution transformers. This approach can be considered as an unsupervised learning approach to cluster the input data (i.e., the power rating of the distribution transformers) in cells (clusters) to find a cell size that gives high internal homogeneity in the cells and high external heterogeneity of each cell with respect to its neighbors in order to reduce the inference errors that can affect the results of spatial load forecasting methods. The proposal was tested considering the spatial distribution of transformers installed in a real distribution system for a medium-sized city. Using the resolution determined by the grid-based model, it is possible to build a map of the spatial distribution of load density in a service area with a low relative local dispersion and a high relative global dispersion. To demonstrate the efficacy of the approach, spatial electric load forecasting of the study zone is performed using different spatial resolutions; the grid size determined via the proposed model represents the equilibrium between spatial error and computational effort, which is the main original contribution of this work. The techniques of spatial electric load forecasting are beyond the scope of this paper. (c) 2014 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv State Sao Paulo UNESP, Dept Elect Engn, Ilha Solteira, SP, Brazil
dc.description.affiliationWest Parana State Univ UNIOESTE, Ctr Engn & Math Sci CECE, Foz De Iguacu, PR, Brazil
dc.description.affiliationUniv Cantabria, Dept Appl Math & Computat Sci, E-39005 Santander, Spain
dc.description.affiliationUnespUniv State Sao Paulo UNESP, Dept Elect Engn, Ilha Solteira, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 303817/2012-7
dc.description.sponsorshipIdCNPq: 473679/2013-2
dc.format.extent177-184
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2014.02.019
dc.identifier.citationElectric Power Systems Research. Lausanne: Elsevier Science Sa, v. 111, p. 177-184, 2014.
dc.identifier.doi10.1016/j.epsr.2014.02.019
dc.identifier.issn0378-7796
dc.identifier.urihttp://hdl.handle.net/11449/113616
dc.identifier.wosWOS:000335873800021
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofElectric Power Systems Research
dc.relation.ispartofjcr2.856
dc.relation.ispartofsjr1,048
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectElectrical distribution planningen
dc.subjectGrid-based clustering approachen
dc.subjectSpatial load forecastingen
dc.subjectGrid-based modelsen
dc.subjectSpatial resolutionen
dc.titleDetermining spatial resolution in spatial load forecasting using a grid-based modelen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes3886842168147059[4]
unesp.author.orcid0000-0001-6495-440X[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos