Logotipo do repositório
 

Publicação:
Analysing research collaboration through co-authorship networks in a big data environment: An efficient parallel approach

dc.contributor.authorValêncio, Carlos Roberto [UNESP]
dc.contributor.authorDe Freitas, José Carlos [UNESP]
dc.contributor.authorDe Souza, Rogéria Cristiane Gratão [UNESP]
dc.contributor.authorNeves, Leandro Alves [UNESP]
dc.contributor.authorZafalon, Geraldo Francisco Donegá [UNESP]
dc.contributor.authorColombini, Angelo Cesar
dc.contributor.authorTenório, William [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFluminense Federal University (UFF)
dc.date.accessioned2020-12-12T02:38:28Z
dc.date.available2020-12-12T02:38:28Z
dc.date.issued2020-01-01
dc.description.abstractBibliometry is the quantitative study of scientific productions and enables the characterisation of scientific collaboration networks. However, with the development of science and the increase of scientific production, large collaborative networks are formed, which makes it difficult to extract bibliometrics. In this context, this work presents an efficient parallel optimisation of three bibliometrics for co-authorship network analysis using multithread programming: transitivity, average distance, and diameter. Our experiments found that the time taken to calculate the transitivity value using the sequential approach grows 4.08 times faster than the parallel proposed approach when the size of co-authorship network grows. Similarly, the time taken to calculate the average distance and diameter values using the sequential approach grows 5.27 times faster than the parallel proposed approach when the size of co-authorship network grows. In addition, we report relevant values of speed up and efficiency for the developed algorithms.en
dc.description.affiliationInstitute of Biosciences Humanities and Exact Sciences (IBILCE) São Paulo State University (UNESP) Campus São José Do Rio Preto
dc.description.affiliationFluminense Federal University (UFF)
dc.description.affiliationUnespInstitute of Biosciences Humanities and Exact Sciences (IBILCE) São Paulo State University (UNESP) Campus São José Do Rio Preto
dc.format.extent364-374
dc.identifierhttp://dx.doi.org/10.1504/IJCSE.2020.106061
dc.identifier.citationInternational Journal of Computational Science and Engineering, v. 21, n. 3, p. 364-374, 2020.
dc.identifier.doi10.1504/IJCSE.2020.106061
dc.identifier.issn1742-7193
dc.identifier.issn1742-7185
dc.identifier.lattes5914651754517864
dc.identifier.orcid0000-0002-7449-9022
dc.identifier.scopus2-s2.0-85082773827
dc.identifier.urihttp://hdl.handle.net/11449/201662
dc.language.isoeng
dc.relation.ispartofInternational Journal of Computational Science and Engineering
dc.sourceScopus
dc.subjectBibliometrics
dc.subjectCo-authorship network
dc.subjectGraphs
dc.subjectKnowledge extraction
dc.subjectNoSQL
dc.subjectParallel computing
dc.titleAnalysing research collaboration through co-authorship networks in a big data environment: An efficient parallel approachen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes5914651754517864[3]
unesp.author.orcid0000-0002-7449-9022[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos