Nonlinear analysis and vibro-impact characteristics of a shaft-bearing assembly
| dc.contributor.author | Saunders, B. E. | |
| dc.contributor.author | Kuether, R. J. | |
| dc.contributor.author | Vasconcellos, R. [UNESP] | |
| dc.contributor.author | Abdelkefi, A. | |
| dc.contributor.institution | New Mexico State University | |
| dc.contributor.institution | Sandia National Laboratories | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T18:49:52Z | |
| dc.date.issued | 2024-03-01 | |
| dc.description.abstract | This study investigates the nonlinear frequency response of a shaft-bearing assembly with vibro-impacts occurring at the bearing clearances. The formation of nonlinear behavior as system parameters change is examined, along with the effects of asymmetries in the nominal, inherently symmetric system. The primary effect of increasing the forcing magnitude or decreasing the contact gap sizes is the formation of grazing-induced chaotic solution branches occurring over a wide frequency range near each system resonance. The system's nominal setup has very hard contact stiffness and shows no evidence of isolas or superharmonic resonances over the frequency ranges of interest. Moderate contact stiffnesses cause symmetry breaking and introduce superharmonic resonance branches of primary resonances. Even if some primary resonances are not present due to the system's inherent symmetry, their superharmonic resonances still manifest. Branches of quasiperiodic isolas (isolated resonance branches) are also discovered, along with a cloud of isolas near a high-frequency resonance. Parameter asymmetries are found to produce a few significant changes in behavior: asymmetric linear stiffness, contact stiffness, and gap size could affect the behavior of primary resonant frequencies and isolas. | en |
| dc.description.affiliation | Department of Mechanical & Aerospace Engineering New Mexico State University | |
| dc.description.affiliation | Sandia National Laboratories | |
| dc.description.affiliation | São Paulo State University (UNESP), Campus of São João da Boa Vista | |
| dc.description.affiliationUnesp | São Paulo State University (UNESP), Campus of São João da Boa Vista | |
| dc.description.sponsorship | Sandia National Laboratories | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorshipId | CAPES: 88881.302889/2018-01 | |
| dc.identifier | http://dx.doi.org/10.1016/j.ijnonlinmec.2023.104618 | |
| dc.identifier.citation | International Journal of Non-Linear Mechanics, v. 159. | |
| dc.identifier.doi | 10.1016/j.ijnonlinmec.2023.104618 | |
| dc.identifier.issn | 0020-7462 | |
| dc.identifier.scopus | 2-s2.0-85180618050 | |
| dc.identifier.uri | https://hdl.handle.net/11449/300538 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | International Journal of Non-Linear Mechanics | |
| dc.source | Scopus | |
| dc.subject | Asymmetry | |
| dc.subject | Contact/impact | |
| dc.subject | Isolas | |
| dc.subject | Nonlinear dynamics | |
| dc.subject | Stability | |
| dc.title | Nonlinear analysis and vibro-impact characteristics of a shaft-bearing assembly | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 72ed3d55-d59c-4320-9eee-197fc0095136 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 72ed3d55-d59c-4320-9eee-197fc0095136 | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vista | pt |

