Master stability functions of networks of Izhikevich neurons
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Synchronization has attracted interest in many areas where the systems under study can be described by complex networks. Among such areas is neuroscience, where it is hypothesized that synchronization plays a role in many functions and dysfunctions of the brain. We study the linear stability of synchronized states in networks of Izhikevich neurons using master stability functions (MSFs), and to accomplish that, we exploit the formalism of saltation matrices. Such a tool allows us to calculate the Lyapunov exponents of the MSF properly since the Izhikevich model displays a discontinuity within its spikes. We consider both electrical and chemical couplings as well as global and cluster synchronized states. The MSF calculations are compared with a measure of the synchronization error for simulated networks. We give special attention to the case of electric and chemical coupling, where a riddled basin of attraction makes the synchronized solution more sensitive to perturbations.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Physical Review E, v. 109, n. 4, 2024.




