Publicação: What do very nearly flat detectable cosmic topologies Rook like?
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Iop Publishing Ltd
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Recent studies of the delectability of the cosmic topology of nearly flat universes have often concentrated on the range of values of Omega(0) given by current observations. Here we study the consequences of taking a range of bounds satisfying \Omega(0) - 1\ much less than 1, which include those expected from future observations such as the Planck mission, as well as those predicted by inflationary models. We show that in this limit, a generic detectable non-flat manifold is locally indistinguishable from either a cylindrical (R-2 X S) or toroidal (R x T-2) manifold, irrespective of its global shape, with the former being more likely. Importantly, this is compatible with some recent indications of the alignment of the quadrupole and octupole moments, based on the analysis of the first year WMAP data. It also implies that in this limit an observer would not be able to distinguish topologically whether the universe is spherical, hyperbolic or flat. By severely restricting the expected topological signatures of detectable isometries, our results provide an effective theoretical framework for interpreting cosmological observations, and can be used to confine the parameter spaces which realistic search strategies, such as the 'circles in the sky' method, need to concentrate on.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Classical and Quantum Gravity. Bristol: Iop Publishing Ltd, v. 21, n. 14, p. 3361-3368, 2004.