Logo do repositório

Discretizing the deformation parameter in the suq(2) quantum algebra

dc.contributor.authorPalladino, B. E. [UNESP]
dc.contributor.authorFerreira, P. Leal [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:53:29Z
dc.date.available2022-04-28T19:53:29Z
dc.date.issued1998-01-01
dc.description.abstractInspired in recent works of Biedenharn [1, 2] on the realization of the q-algebra suq (2), we show in this note that the condition [2j + 1]q = Nq(j) = integer, implies the discretization of the deformation parameter α, where q = eα. This discretization replaces the continuum associated to α by an infinite sequence α1, α2, α3, ..., obtained for the values of j, which label the irreps of suq(2). The algebraic properties of Nq(j) are discussed in some detail, including its role as a trace, which conducts to the Clebsch-Gordan series for the direct product of irreps. The consequences of this process of discretization are discussed and its possible applications are pointed out. Although not a necessary one, the present prescription is valuable due to its algebraic simplicity especially in the regime of appreciable values of α.en
dc.description.affiliationInst. de Fisica Teorica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, S.P.
dc.description.affiliationUnespInst. de Fisica Teorica Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, S.P.
dc.format.extent73-77
dc.identifier.citationRevista Mexicana de Fisica, v. 44, n. 1, p. 73-77, 1998.
dc.identifier.issn0035-001X
dc.identifier.scopus2-s2.0-0008090357
dc.identifier.urihttp://hdl.handle.net/11449/223875
dc.language.isoeng
dc.relation.ispartofRevista Mexicana de Fisica
dc.sourceScopus
dc.subjectParameter discretization
dc.subjectQuantum algebras
dc.subjectsuq(2)
dc.titleDiscretizing the deformation parameter in the suq(2) quantum algebraen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos