Logo do repositório
 

Premature ventricular contraction recognition using blind source separation and ensemble gaussian naive bayes weighted by analytic hierarchy process

dc.contributor.authorde Oliveira, Bruno Rodrigues [UNESP]
dc.contributor.authorDuarte, Marco Aparecido Queiroz
dc.contributor.authorFilho, Jozue Vieira [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.date.accessioned2023-03-02T08:37:58Z
dc.date.available2023-03-02T08:37:58Z
dc.date.issued2022-01-12
dc.description.abstractPremature Ventricular Contractions (PVC) arrhythmias can be associated with sudden death and acute myocardial infarction, occurring in 50% of the population for Holter monitoring. PVC patterns are very hard to be recognized since their waveforms can be confused with other heartbeats, such as Right and Left Bundle Branch Blocks. This work proposes a new approach for PVC recognition, based on Gaussian Naive Bayes algorithm and AMUSE (Algorithm for Multiple Unknown Signal Extraction), which is a method for the blind source separation problem. This approach provides a set of attributes that are combined by Linear Discriminant Analysis, allowing the training of an ensemble learning. The Analytic Hierarchy Process weights each learned model according to its importance, obtained from the performance metrics. This approach has some advantages over baseline methods since it does not use a pre-processing stage and employs a simple machine learning model trained using only two parameters for each feature. Using a standard dataset for training and test phases, the proposed approach achieves 98.75% accuracy, 90.65% sensitivity, and 99.46% specificity. The best performance was 99.57% accuracy, 98.64% sensitivity, and 99.65% specificity for other datasets. In general, the proposed approach is better than 66% of the state-of-the-art methods concerning accuracy.en
dc.description.affiliationDepartamento de Engenharia Elétrica Universidade Estadual Paulista “Júlio de Mesquita Filho”, Av. Brasil, 56, Centro, São Paulo
dc.description.affiliationCurso de Matemática Universidade Federal de Mato Grosso do Sul, Mato Grosso do Sul
dc.description.affiliationEngenharia Eletrônica e de Telecomunicações e Engenharia Aeronáutica Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo
dc.description.affiliationUnespDepartamento de Engenharia Elétrica Universidade Estadual Paulista “Júlio de Mesquita Filho”, Av. Brasil, 56, Centro, São Paulo
dc.description.affiliationUnespEngenharia Eletrônica e de Telecomunicações e Engenharia Aeronáutica Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: 001
dc.identifierhttp://dx.doi.org/10.4025/actascitechnol.v44i1.60386
dc.identifier.citationActa Scientiarum - Technology, v. 44.
dc.identifier.doi10.4025/actascitechnol.v44i1.60386
dc.identifier.issn1807-8664
dc.identifier.issn1806-2563
dc.identifier.scopus2-s2.0-85135054926
dc.identifier.urihttp://hdl.handle.net/11449/242089
dc.language.isoeng
dc.relation.ispartofActa Scientiarum - Technology
dc.sourceScopus
dc.subjectArrhythmia recognition
dc.subjectdecision making in health
dc.subjectensemble learning
dc.subjectheart diseases
dc.subjectmachine learning
dc.titlePremature ventricular contraction recognition using blind source separation and ensemble gaussian naive bayes weighted by analytic hierarchy processen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos