Logotipo do repositório
 

Publicação:
A user-driven association rule mining based on templates for multi-relational data

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Data mining algorithms to find association rules are an important tool to extract knowledge from databases. However, these algorithms produce an enormous amount of rules, many of which could be redundant or irrelevant for a specific decision-making process. Also, the use of previous knowledge and hypothesis are not considered by these algorithms. On the other hand, most existing data mining approaches look for patterns in a single data table, ignoring the relations presented in relational databases. The contribution of this paper is the proposition of a multirelational data mining algorithm based on association rules, called TBMRRadix, which considers previous knowledge and hypothesis through the using of the Templates technique. Applying this approach over two real databases, we were able to reduce the number of generated rules, use the existing knowledge about the data and reduce the waste of computational resources while processing. Our experiments show that the developed algorithm was also able to perform in a multi-relational environment, while the MR-Radix, that does not use Templates technique, was not.

Descrição

Palavras-chave

Association rules, Data mining, Knowledge discovery in databases, Multi-relational data mining, Templates, User-driven filter

Idioma

Inglês

Como citar

Journal of Computer Science, v. 14, n. 11, p. 1475-1487, 2018.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação