Publicação: Testing the lognormality of the galaxy and weak lensing convergence distributions from Dark Energy Survey maps
Carregando...
Arquivos
Data
2017-04-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Oxford Univ Press
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
It is well known that the probability distribution function (PDF) of galaxy density contrast is approximately lognormal; whether the PDF of mass fluctuations derived from weak lensing convergence (kappa(WL)) is lognormal is less well established. We derive PDFs of the galaxy and projected matter density distributions via the counts-in-cells (CiC) method. We use maps of galaxies and weak lensing convergence produced from the Dark Energy Survey Science Verification data over 139 deg(2). We test whether the underlying density contrast is well described by a lognormal distribution for the galaxies, the convergence and their joint PDF. We confirm that the galaxy density contrast distribution is well modelled by a lognormal PDF convolved with Poisson noise at angular scales from 10 to 40 arcmin (corresponding to physical scales of 3-10 Mpc). We note that as kappa(WL) is a weighted sum of the mass fluctuations along the line of sight, its PDF is expected to be only approximately lognormal. We find that the kappa(WL) distribution is well modelled by a lognormal PDF convolved with Gaussian shape noise at scales between 10 and 20 arcmin, with a best-fitting chi(2)/dof of 1.11 compared to 1.84 for a Gaussian model, corresponding to p-values 0.35 and 0.07, respectively, at a scale of 10 arcmin. Above 20 arcmin a simple Gaussian model is sufficient. The joint PDF is also reasonably fitted by a bivariate lognormal. As a consistency check, we compare the variances derived from the lognormal modelling with those directly measured via CiC. Our methods are validated against maps from the MICE Grand Challenge N-body simulation.
Descrição
Idioma
Inglês
Como citar
Monthly Notices Of The Royal Astronomical Society. Oxford: Oxford Univ Press, v. 466, n. 2, p. 1444-1461, 2017.