Repository logo
 

Publication:
Cellular functionality on nanotubes of Ti-30Ta alloy

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Work presented at event

Access right

Acesso abertoAcesso Aberto

Abstract

Recent studies have identified strong correlations between anodized metals and the production of highly biomimetic nanoscale topographies. These surfaces provide an interface of enhanced biocompatibility that exhibits a high degree of oxidation and surface energy. In this study, Human dermal fibroblasts (HDF, neonatal) were utilized to evaluate the biocompatibility of Ti-30Ta nanotubes after 1 day of culture. The anodization process was performed in an electrolyte solution containing HF (48%) and H2SO4 (98%) in the volumetric ratios 1:9 with the addition of 5% dimethyl sulfoxide (DMSO) at 35V for 40 min. Cellular analysis identified improved fibroblast functionality on the nanotube surface, showing increased elongation, and extracellular matrix production on the Ti-30Ta nanotubes. The results presented identify improved cellular interaction on Ti-30Ta nanotubes as compared to the control substrates. Thus, the formation of the nanotube on Ti30Ta alloy may have potential application as interface for implantable devices.

Description

Keywords

Human dermal fibroblasts, Ti-30Ta nanotube arrays

Language

English

Citation

Materials Science Forum, v. 805, p. 61-64.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs